Create README.md
Browse files---
language: "en"
tags:
- Robust ASR
- Speech Enhancement
- PyTorch
license: "apache-2.0"
datasets:
- Voicebank
- DEMAND
metrics:
- WER
- PESQ
- eSTOI
---
# 1D CNN + Transformer Trained w/ Mimic Loss
This repository provides all the necessary tools to perform enhancement and
robust ASR training (EN) within
SpeechBrain. For a better experience we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance is:
| Release | Test PESQ | Test eSTOI | Valid WER | Test WER |
|:-----------:|:-----:| :-----:|:----:|:---------:|
| 21-03-08 | 2.92 | 85.2 | 3.20 | 2.96 |
## Pipeline description
The mimic loss training system consists of three steps:
1. A perceptual model is pre-trained on clean speech features, the
same type used for the enhancement masking system.
2. An enhancement model is trained with mimic loss, using the
pre-trained perceptual model.
3. A large ASR model pre-trained on LibriSpeech is fine-tuned
using the enhancement front-end.
The enhancement and ASR models can be used together or
independently.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install \\we hide ! SpeechBrain is still private :p
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
## Referencing Mimic Loss
If you find mimic loss useful, please cite:
```
@inproceedings{bagchi2018spectral,
title={Spectral Feature Mapping with Mimic Loss for Robust Speech Recognition},
author={Bagchi, Deblin and Plantinga, Peter and Stiff, Adam and Fosler-Lussier, Eric},
booktitle={IEEE Conference on Audio, Speech, and Signal Processing (ICASSP)},
year={2018}
}
```
## Referencing SpeechBrain
If you find SpeechBrain useful, please cite:
```
@misc
{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
}
```