File size: 3,984 Bytes
c85db8d 3c6d53b 99b112b c85db8d f1e3c9f 4f1195c c85db8d adcecd9 36a88b6 c85db8d a1d16fe c85db8d d8fb79c c85db8d be3e8ce c85db8d f8081a9 c85db8d c106fda 3c74ddb c85db8d 6ec0f0b 9af4e8e 6ec0f0b 9af4e8e 6ec0f0b bbbfa22 c85db8d 6ec0f0b c85db8d 18e41d9 6ec0f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language: "en"
thumbnail:
tags:
- audio-to-audio
- audio-source-separation
- Source Separation
- Speech Separation
- WHAM!
- SepFormer
- Transformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- WHAMR!
metrics:
- SI-SNRi
- SDRi
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# SepFormer trained on WHAMR! (16k sampling frequency)
This repository provides all the necessary tools to perform audio source separation with a [SepFormer](https://arxiv.org/abs/2010.13154v2) model, implemented with SpeechBrain, and pretrained on [WHAMR!](http://wham.whisper.ai/) dataset with 16k sampling frequency, which is basically a version of WSJ0-Mix dataset with environmental noise and reverberation in 16k. For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The given model performance is 13.5 dB SI-SNRi on the test set of WHAMR! dataset.
| Release | Test-Set SI-SNRi | Test-Set SDRi |
|:-------------:|:--------------:|:--------------:|
| 30-03-21 | 13.5 dB | 13.0 dB |
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io).
### Perform source separation on your own audio file
```python
from speechbrain.pretrained import SepformerSeparation as separator
import torchaudio
model = separator.from_hparams(source="speechbrain/sepformer-whamr16k", savedir='pretrained_models/sepformer-whamr16k')
# for custom file, change path
est_sources = model.separate_file(path='speechbrain/sepformer-whamr16k/test_mixture16k.wav')
torchaudio.save("source1hat.wav", est_sources[:, :, 0].detach().cpu(), 16000)
torchaudio.save("source2hat.wav", est_sources[:, :, 1].detach().cpu(), 16000)
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
### Training
The model was trained with SpeechBrain (fc2eabb7).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```
cd recipes/WHAMandWHAMR/separation/
python train.py hparams/sepformer-whamr.yaml --data_folder=your_data_folder --sample_rate=16000
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1QiQhp1vi5t4UfNpNETA48_OmPiXnUy8O?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
#### Referencing SpeechBrain
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
#### Referencing SepFormer
```bibtex
@inproceedings{subakan2021attention,
title={Attention is All You Need in Speech Separation},
author={Cem Subakan and Mirco Ravanelli and Samuele Cornell and Mirko Bronzi and Jianyuan Zhong},
year={2021},
booktitle={ICASSP 2021}
}
```
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/ |