Commit
·
810cc65
1
Parent(s):
6547910
Update README.md
Browse files
README.md
CHANGED
@@ -46,6 +46,53 @@ mel_specs = torch.rand(2, 80,298)
|
|
46 |
waveforms = hifi_gan.decode_batch(mel_specs)
|
47 |
```
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
### Inference on GPU
|
50 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
51 |
|
|
|
46 |
waveforms = hifi_gan.decode_batch(mel_specs)
|
47 |
```
|
48 |
|
49 |
+
```python
|
50 |
+
import torchaudio
|
51 |
+
from speechbrain.pretrained import HIFIGAN
|
52 |
+
from speechbrain.lobes.models.FastSpeech2 import mel_spectogram
|
53 |
+
|
54 |
+
# Load a pretrained HIFIGAN Vocoder
|
55 |
+
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-libritts-16kHz", savedir="tmpdir")
|
56 |
+
|
57 |
+
# Load an audio file (an example file can be found in this repository)
|
58 |
+
# Ensure that the audio signal is sampled at 16000 Hz; refer to the provided link for a 22050 Hz Vocoder.
|
59 |
+
#signal, rate = torchaudio.load('speechbrain/tts-hifigan-libritts-16kHz/example_16kHz.wav')
|
60 |
+
signal, rate = torchaudio.load('/home/mirco/Downloads/example_16kHz.wav')
|
61 |
+
|
62 |
+
# Ensure the audio is sigle channel
|
63 |
+
signal = signal[0].squeeze()
|
64 |
+
|
65 |
+
torchaudio.save('waveform.wav', signal.unsqueeze(0), 16000)
|
66 |
+
|
67 |
+
# Compute the mel spectrogram.
|
68 |
+
# IMPORTANT: Use these specific parameters to match the Vocoder's training settings for optimal results.
|
69 |
+
spectrogram, _ = mel_spectogram(
|
70 |
+
audio=signal.squeeze(),
|
71 |
+
sample_rate=16000,
|
72 |
+
hop_length=256,
|
73 |
+
win_length=1024,
|
74 |
+
n_mels=80,
|
75 |
+
n_fft=1024,
|
76 |
+
f_min=0.0,
|
77 |
+
f_max=8000.0,
|
78 |
+
power=1,
|
79 |
+
normalized=False,
|
80 |
+
min_max_energy_norm=True,
|
81 |
+
norm="slaney",
|
82 |
+
mel_scale="slaney",
|
83 |
+
compression=True
|
84 |
+
)
|
85 |
+
|
86 |
+
# Convert the spectrogram to waveform
|
87 |
+
waveforms = hifi_gan.decode_batch(spectrogram)
|
88 |
+
|
89 |
+
# Save the reconstructed audio as a waveform
|
90 |
+
torchaudio.save('waveform_reconstructed.wav', waveforms.squeeze(1), 16000)
|
91 |
+
|
92 |
+
# If everything is set up correctly, the original and reconstructed audio should be nearly indistinguishable.
|
93 |
+
|
94 |
+
```
|
95 |
+
|
96 |
### Inference on GPU
|
97 |
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
98 |
|