File size: 4,437 Bytes
218decd
 
 
 
339ef27
218decd
2d8381e
ac7e31d
 
218decd
2d8381e
218decd
ac7e31d
cc02f00
218decd
 
2d8381e
218decd
ac7e31d
 
218decd
 
 
 
 
2d8381e
218decd
2d8381e
 
 
ac7e31d
2d8381e
ac7e31d
218decd
 
ac7e31d
218decd
2d8381e
218decd
2d8381e
218decd
 
 
2d8381e
218decd
 
 
 
 
 
 
 
 
 
 
 
2d8381e
218decd
 
 
 
2d8381e
 
ac7e31d
218decd
 
 
 
 
 
2d8381e
218decd
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8381e
 
218decd
 
2d8381e
218decd
 
 
 
2d8381e
 
 
 
 
 
 
 
 
 
 
 
 
 
218decd
 
 
2d8381e
 
 
 
 
 
 
 
ac7e31d
 
218decd
0f88c1b
06ea68b
 
 
 
 
 
d37ce25
06ea68b
 
 
 
d37ce25
 
06ea68b
218decd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
language: "en"
thumbnail:
tags:
- speechbrain
- embeddings
- Sound
- Keywords
- Keyword Spotting
- pytorch
- ECAPA-TDNN
- TDNN
- Command Recognition
- audio-classification
license: "apache-2.0"
datasets:
- Urbansound8k
metrics:
- Accuracy

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Command Recognition with ECAPA embeddings on UrbanSoudnd8k

This repository provides all the necessary tools to perform sound recognition with SpeechBrain using a model pretrained on UrbanSound8k.
You can download the dataset [here](https://urbansounddataset.weebly.com/urbansound8k.html)
The provided system can recognize the following 10 keywords:
```
dog_bark, children_playing, air_conditioner, street_music, gun_shot, siren, engine_idling, jackhammer, drilling, car_horn
```

For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:

| Release | Accuracy 1-fold (%)
|:-------------:|:--------------:|
| 04-06-21 | 75.5 | 


## Pipeline description
This system is composed of a ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform Sound Recognition

```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/urbansound8k_ecapa", savedir="pretrained_models/gurbansound8k_ecapa")
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/urbansound8k_ecapa/dog_bark.wav')
print(text_lab)
```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (8cab8b0c).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd recipes/UrbanSound8k/SoundClassification
python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sItfg_WNuGX6h2dCs8JTGq2v2QoNTaUg?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing ECAPA
```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
  author    = {Brecht Desplanques and
               Jenthe Thienpondt and
               Kris Demuynck},
  editor    = {Helen Meng and
               Bo Xu and
               Thomas Fang Zheng},
  title     = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
               in {TDNN} Based Speaker Verification},
  booktitle = {Interspeech 2020},
  pages     = {3830--3834},
  publisher = {{ISCA}},
  year      = {2020},
}
```

#### Referencing UrbanSound
```@inproceedings{Salamon:UrbanSound:ACMMM:14,
    Author = {Salamon, J. and Jacoby, C. and Bello, J. P.},
    Booktitle = {22nd {ACM} International Conference on Multimedia (ACM-MM'14)},
    Month = {Nov.},
    Pages = {1041--1044},
    Title = {A Dataset and Taxonomy for Urban Sound Research},
    Year = {2014}}
```



# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.


```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```