Commit
·
c637dfe
1
Parent(s):
e831f1e
Upload PPO LunarLander-v2 trained agent v1
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 250.87 +/- 23.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f02ab6053f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f02ab605480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f02ab605510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02ab6055a0>", "_build": "<function ActorCriticPolicy._build at 0x7f02ab605630>", "forward": "<function ActorCriticPolicy.forward at 0x7f02ab6056c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f02ab605750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f02ab6057e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f02ab605870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f02ab605900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f02ab605990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f02ab605a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f02ab5fb6c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688393562539582035, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAYW724VsK5G27Ru+rZDDhqgyM6yscItwAAgD8AAIA/Gt5aPdQhbj/+/xU706qevnZG2rz6B248AAAAAAAAAACa2R0+nniRP9Dm9T4VhuG+kPiFPt5KTz4AAAAAAAAAANoDvr3DuQC6la3fuvp13bWUTZ05kQ4AOgAAgD8AAIA/wKyaPXYuhz+rEQM+BLDAviskUD3ggwM9AAAAAAAAAAAzZv+84RCbusrBMTlQmyw1osa3utbyS7gAAIA/AACAPzPwibyPagC62/SQu4+DrbjNzn+7QDIeOAAAgD8AAIA/TTYMPfaMYbpTvCu823mWNkRBWruiLQi2AACAPwAAgD9jr58+9NB9P1YlPz7uOOq+mi2GPrhsbb0AAAAAAAAAAOYVJT1IgeI53Xblu+SpuDXoIOs6LmwvtQAAgD8AAIA/Jj2Nva79jroI5XE6VTccNaZJKbqDwIu5AACAPwAAgD9mqui84baguq9zLTsBovU2KxPxOhr8R7oAAIA/AACAPwDIuz0/Qw8+Rfgzvru/Hb7pyT+8hpC0PAAAAAAAAAAAAEebPOE8sbpDz1s5IIXhtP8MAbnyxXq4AACAPwAAgD/NyJO742SIPxAH/zx1f5m+/1d5O51A+zwAAAAAAAAAAE2QI734yvA8Fluyu59SjL6ACis8h02HuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF5haa1Cw8qMAWyUTegDjAF0lEdAmtGsm0E5hnV9lChoBkdAZSCBTXJ5mmgHTegDaAhHQJrS1L/S6Ud1fZQoaAZHQGGEgGbCrLhoB03oA2gIR0Ca2T30wrUcdX2UKGgGR0BKf8q4H5aeaAdL7GgIR0Ca3D0ojOcEdX2UKGgGR0BjmCUPhAGCaAdN6ANoCEdAmtzmj9GZu3V9lChoBkdAZ4fWH1vl2mgHTegDaAhHQJrdkqrilzl1fZQoaAZHQE1gxFAmiQFoB0vnaAhHQJrd2+JxecB1fZQoaAZHQF7Nj3Ehq0toB03oA2gIR0Ca4Gx6fJ3gdX2UKGgGR0BlG0dtEXtTaAdN6ANoCEdAmvvRDCxeLXV9lChoBkdAZh1llK9PDmgHTegDaAhHQJr9vNPgvUV1fZQoaAZHQFNHDDCP6sRoB0v9aAhHQJsAHv9cbBJ1fZQoaAZHQGU4fViF0xNoB03oA2gIR0CbAYPWxyGSdX2UKGgGR0BmMHgWJrLyaAdN6ANoCEdAmwQdnPE873V9lChoBkdAYozZg5R0l2gHTegDaAhHQJsIldAxBVx1fZQoaAZHQGWOFiBoVVRoB03oA2gIR0CbDIHxBmf5dX2UKGgGR0BhyYcLjPv8aAdN6ANoCEdAmw+1efI0ZXV9lChoBkdAcPDd3B55aGgHTVwDaAhHQJsQtvMr3Cd1fZQoaAZHQGKE8nVoYeloB03oA2gIR0CbGmWwu/UOdX2UKGgGR0Bj9HhqCYkWaAdN6ANoCEdAmx09Pk7wKHV9lChoBkdAZtXLSuyNXGgHTegDaAhHQJskna8Hv+h1fZQoaAZHQGDnJE6T4cpoB03oA2gIR0CbKSib2Dg7dX2UKGgGR0BjX3c8DB/JaAdN6ANoCEdAmyoZE+gUUXV9lChoBkdAZBbDXOGCZmgHTegDaAhHQJsrcCyQgcN1fZQoaAZHQGazDYZl4C9oB03oA2gIR0CbLx+NcW0rdX2UKGgGR0Bxd6j3225QaAdNRANoCEdAmzIRJqZc9nV9lChoBkdAZFC99MK1HGgHTegDaAhHQJtIUzKs+3Z1fZQoaAZHQHEH8yWRigFoB02zAWgIR0CbSLI0ZWJadX2UKGgGR0Bn5H7+DOC5aAdN6ANoCEdAm0nnlGPPs3V9lChoBkdAZiwsr/bTMWgHTegDaAhHQJtNiEIw/Ph1fZQoaAZHQGXeRNIsiB5oB03oA2gIR0CbUDb2lEZ0dX2UKGgGR0BhhYzDXOGCaAdN6ANoCEdAm1TnRLK3eHV9lChoBkdAaIl29tdiUmgHTegDaAhHQJtZPIBBAwB1fZQoaAZHQGZwmj0th/loB03oA2gIR0CbXMKaXrt3dX2UKGgGR0BjZqeoUBXCaAdN6ANoCEdAm13deD3/P3V9lChoBkdAZFZnRsuWbGgHTegDaAhHQJtwU/NZ/1B1fZQoaAZHQGXFDIikftBoB03oA2gIR0CbeE94/u9fdX2UKGgGR0Bl2rwe/5+IaAdN6ANoCEdAm3uu6d1+zHV9lChoBkdAYv+2bXpW3mgHTegDaAhHQJt8bmJWNm11fZQoaAZHQGLfH0kGA09oB03oA2gIR0CbfYFZxJd0dX2UKGgGR0BgOt2/zreJaAdN6ANoCEdAm4AXHNorWnV9lChoBkdAYyWebutwJmgHTegDaAhHQJuB+NgjQiR1fZQoaAZHQGWbg/TspodoB03oA2gIR0Cbho0mtyPudX2UKGgGR0BiGGIfr8iwaAdN6ANoCEdAm5a3W8RL9XV9lChoBkdAZBq0Re1KG2gHTegDaAhHQJuX4GyHEdh1fZQoaAZHQGA8Ipx3mmtoB03oA2gIR0CbnBIJqqOtdX2UKGgGR0Bk3fGZNO/MaAdN6ANoCEdAm59Uu+RHPXV9lChoBkdAYENPmgam42gHTegDaAhHQJulYFvAGjd1fZQoaAZHQF5DVuJk5IZoB03oA2gIR0Cbq1OkLx7RdX2UKGgGR0BgMc+LWI43aAdN6ANoCEdAm66gaef7JnV9lChoBkdAZUsJmdy1eGgHTegDaAhHQJuvstlI3BJ1fZQoaAZHQGTEt0/4ZdhoB03oA2gIR0CbvJRxtHhCdX2UKGgGR0BjQazmfXf7aAdN6ANoCEdAm8QLMPjGUHV9lChoBkdAZdV1bqyGBWgHTegDaAhHQJvHPKSxJNF1fZQoaAZHQGN9zrmhdt5oB03oA2gIR0Cbx+sZHd43dX2UKGgGR0Bo+VLYf4h2aAdN6ANoCEdAm8jnbqQiinV9lChoBkdAQ7I+6iCaqmgHS+loCEdAm8o0Eovzv3V9lChoBkdAYyft3wCr92gHTegDaAhHQJvLUAggX/J1fZQoaAZHQGg3Yf4h2W9oB03oA2gIR0CbzSp6QeV+dX2UKGgGR0Bkl45R0lqraAdN6ANoCEdAm9Gj5Kvmo3V9lChoBkdAY/LB1s+FDmgHTegDaAhHQJvSAbT+ee51fZQoaAZHQGPybedkJ8hoB03oA2gIR0Cb6B+tr9EUdX2UKGgGR0BJ1zaTOgQIaAdL3GgIR0Cb6OGM4tHydX2UKGgGR0BjcijDbah6aAdN6ANoCEdAm+t/ZAY51nV9lChoBkdAaEW0VrRBvGgHTegDaAhHQJvt9zp5eJJ1fZQoaAZHQGbNV5Sm65JoB03oA2gIR0Cb8o6+nIhhdX2UKGgGR0Bih9x0dRzjaAdN6ANoCEdAm/b5SeiBXnV9lChoBkdAQ3Yr6LwWnGgHS9loCEdAm/dlKK5083V9lChoBkdAUEfyOJcgQ2gHS9VoCEdAm/n8YQ8OkXV9lChoBkdAaDaj+JgssmgHTegDaAhHQJv6a1og3cZ1fZQoaAZHQGIlEug6EJ1oB03oA2gIR0Cb+29cKPXDdX2UKGgGR0BKmy9ugpSaaAdL2WgIR0CcAwJNj9XLdX2UKGgGR0BiAnEAHVwxaAdN6ANoCEdAnBJwzYVZcXV9lChoBkdAYxQJKraM72gHTegDaAhHQJwXbZTQ3P11fZQoaAZHQGKoMEidJ8RoB03oA2gIR0CcGILYf4h2dX2UKGgGR0BnGqvs7dSEaAdN6ANoCEdAnBwEaAFxGXV9lChoBkdAYlBfk3juKGgHTegDaAhHQJwdvpLVWjp1fZQoaAZHQGZ1MJ6Y3NtoB03oA2gIR0CcH/5Jsfq5dX2UKGgGR0BgVg+IMz/IaAdN6ANoCEdAnCSSgPEsKHV9lChoBkdAX0FP69CeE2gHTegDaAhHQJwk7Wbwz+F1fZQoaAZHQGaZzcqOLixoB03oA2gIR0CcJfoEB8x9dX2UKGgGR0BjakWhysCDaAdN6ANoCEdAnCa3c+JP7HV9lChoBkdAZPWIppeu3mgHTegDaAhHQJxAOn4wh4d1fZQoaAZHQGRF0UoKD01oB03oA2gIR0CcRKfsNUfgdX2UKGgGR0BjNHSYw7DEaAdN6ANoCEdAnEcthJAdGXV9lChoBkdAY7ggIQe3hGgHTegDaAhHQJxHyd5IH1R1fZQoaAZHQGNk/wRXfZVoB03oA2gIR0CcSS1FYuCgdX2UKGgGR0ByxKkHlfZ3aAdNZAJoCEdAnFLOnuRcNnV9lChoBkdAY+s+M6zVt2gHTegDaAhHQJxTMiY9gWt1fZQoaAZHQENEvRJEpiJoB0vcaAhHQJxYAWoFV1h1fZQoaAZHQGN1w4S6DoRoB03oA2gIR0CcYSVQAMlUdX2UKGgGR0BI32attALRaAdL8WgIR0CcYqeJHiFTdX2UKGgGR0BeyS/sVtXQaAdN6ANoCEdAnGQ/alDWsnV9lChoBkdAYs2AAhje9GgHTegDaAhHQJxk7G8274B1fZQoaAZHQGa/ActGus9oB03oA2gIR0CcZxPVurIYdX2UKGgGR0Bhae5J9RaYaAdN6ANoCEdAnGgv5k9U0nV9lChoBkdAZtPYsd1dPmgHTegDaAhHQJxu2WszVMF1fZQoaAZHQGHad2xIJ7doB03oA2gIR0CcbzPyCnP3dX2UKGgGR0BPvrPUrkKeaAdLyGgIR0Ccb02f029+dX2UKGgGR0BpOXFHavicaAdN6ANoCEdAnHBsD4gzQHV9lChoBkdAXsafcvduYWgHTegDaAhHQJxxKi35N491ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a350d3e20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a350d3eb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a350d3f40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a350d8040>", "_build": "<function ActorCriticPolicy._build at 0x7f1a350d80d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a350d8160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a350d81f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a350d8280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a350d8310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a350d83a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a350d8430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a350d84c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a350dc1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688423453608811346, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMLSzxRjmQ+FvL5PKRmhL6oeeE8lToyvQAAAAAAAAAACu+UPv5Rhz+TknE+PJv5vjYsmj6Cz9O8AAAAAAAAAABANcm9HpaOPjH/kju0s6O+8pv2vBJ9mT0AAAAAAAAAAHPFkT3uXpI+CtrsvBDUf76Su/q7VzgGPAAAAAAAAAAAZpx7vI/OcbrlB1k3BNZSMh65LDpA8n22AACAPwAAgD8zh489OM2Du3VhoLzL+aM7pfSmPOUZmrwAAIA/AACAPwDqNrwU5o2809KWu6ovFz1KiwQ+8ynqvQAAgD8AAIA/zdDnu8OxMrpRoLG6yoQXucjuQLrgINg5AACAPwAAgD86Z1a+41YZP4QrBz7q2qy+0hPbvUhG3D0AAAAAAAAAABpETD0DOi4/agIEPf0Gyb5Zkys9BsyqOQAAAAAAAAAA7SYnvucCkz8GKxy/4t27vvZkNb6+fI6+AAAAAAAAAAAgTwW+ivpnPs1FuT0GpEG+ui3ovE5UwDwAAAAAAAAAAOBslz6pvNc+aWopvqw2ir76pAM+dKW+vQAAAAAAAAAAnSapPueIiz+yiQM/qUMcv5qKvj4b5uE7AAAAAAAAAAAAjjY+W4uGvEaNlDp7H8y4oAfmvaD0wbkAAIA/AACAP4CI4D1HRFo+tXiXvrnDhb6o2pi9SPfoPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH7jRUm2LKMAWyUTRkBjAF0lEdAsxlKab4Ju3V9lChoBkdAYJ4CiAUcn2gHTegDaAhHQLMZf1ie/Yd1fZQoaAZHQHBgC4vvjOtoB00IAWgIR0CzGZT2i+L4dX2UKGgGR0Bwmp1ZDArQaAdNJgFoCEdAsxmsSIxgzHV9lChoBkdAcmc04iosI2gHTQcBaAhHQLMaP4Nqgyx1fZQoaAZHQG1OdtEXtShoB0vyaAhHQLMauJ5E+gV1fZQoaAZHQHHDEm2LHdZoB00BAWgIR0CzGsQUYbbUdX2UKGgGR0BydKGFi8WcaAdL5GgIR0CzGzt6HCXQdX2UKGgGR0ByfHe2uxKQaAdNBgFoCEdAsxt6VD8cdnV9lChoBkdAcgx9TP0I1WgHTREBaAhHQLMb7/zasZJ1fZQoaAZHQHFUJ/b0voNoB0vtaAhHQLMcBSM98qp1fZQoaAZHQHIbe1v2oNxoB0v6aAhHQLMcffUF0Pp1fZQoaAZHQHFsOP3i705oB00iAWgIR0CzHID0pVjqdX2UKGgGR0ByHsS6DoQnaAdNMAFoCEdAsxzjJ9y93HV9lChoBkdAb/qtJWeYlmgHTQoBaAhHQLMdJhB7eEZ1fZQoaAZHQHK3m8qWkadoB0vmaAhHQLMdX3dsSCh1fZQoaAZHQHGT19fCyhVoB00LAWgIR0CzHWV6AvtddX2UKGgGR0BxI2pIczZZaAdNGAFoCEdAsx1wo5PuX3V9lChoBkdAcAANJvo/zWgHTT0BaAhHQLMd3TK1XvJ1fZQoaAZHQHGbLwrlNlBoB0vraAhHQLMeCsmOU+t1fZQoaAZHQG5wn7gsK9hoB00KAWgIR0CzHgrZJ04jdX2UKGgGR0Bx60PXkHUuaAdNHwFoCEdAsx5LIeYD1XV9lChoBkdAUU8fhddE9mgHS7JoCEdAsx5sAIY3vXV9lChoBkdAYV9kQPI4l2gHTegDaAhHQLMehznied11fZQoaAZHQHK/roW56MRoB00QAWgIR0CzHpEVJtiydX2UKGgGR0BxNCrMkhRqaAdNJQFoCEdAsx8dnzxwynV9lChoBkdAU7wgzP8htGgHS7toCEdAsx9NNRFZxXV9lChoBkdAcJ3n4fwI+mgHTRsBaAhHQLMfcaTwDvF1fZQoaAZHQHEij72tdRloB0vraAhHQLMfvmf5DZ11fZQoaAZHQHITNZq20AtoB00rAWgIR0CzH/sGC7K8dX2UKGgGR0BwY5jvuw5eaAdNFQFoCEdAsx/9kRSP2nV9lChoBkdAcnPGax5cDGgHTREBaAhHQLMgKE7W/ah1fZQoaAZHQHBLsz2vjfhoB024AWgIR0CzIJY2n88+dX2UKGgGR0BtKh1FH8TBaAdNEAFoCEdAsyCdWLgn+nV9lChoBkdAUy3pwCKaX2gHS85oCEdAsyCfvphWo3V9lChoBkdAb+yZl4C6pmgHTREBaAhHQLMgzdGiHqN1fZQoaAZHQHIs+Wv8qF1oB00RAWgIR0CzIM2u1WsBdX2UKGgGR0ByqtyLhrFgaAdL/GgIR0CzIQl50KZ2dX2UKGgGR0BiNCbjLjgiaAdN6ANoCEdAsyFIwYcebXV9lChoBkdAcfoYEnssx2gHTUEBaAhHQLMhcSWJJoV1fZQoaAZHQHBHRYV6/qRoB01JAWgIR0CzIZ6dlNDddX2UKGgGR0BwWQYrJ8v3aAdNDQFoCEdAsyIKfnOjZnV9lChoBkdAcQaf1Hvtt2gHTSgBaAhHQLMkk+wC8vp1fZQoaAZHQHL8wqNIbwVoB00HAWgIR0CzJKsxCY1HdX2UKGgGR0Bw/inwXqJNaAdNQgFoCEdAsySt5hScb3V9lChoBkdAbsLN7jT8YWgHS/toCEdAsyS8pAlfJHV9lChoBkdAcgknanJkoWgHTRYBaAhHQLMk9RQaaTh1fZQoaAZHQHN9iSFGoaVoB0vmaAhHQLMlFULlV951fZQoaAZHQHCsAMQVbiZoB0vtaAhHQLMlI01IiC91fZQoaAZHQHI2qk690zVoB00hAWgIR0CzJTFU+9rXdX2UKGgGR0ByEv94u9OAaAdL8WgIR0CzJU51A7gbdX2UKGgGR0BwReCAc1fmaAdNHQFoCEdAsyWBPHktE3V9lChoBkdAbsDvKlpGnWgHS/FoCEdAsyWGKHfuTnV9lChoBkdAcz9+3Ytg8mgHTRIBaAhHQLMll3Td+G51fZQoaAZHQG5Zk0rK/21oB00IAWgIR0CzJgpYLb5/dX2UKGgGR0Bwl50hePaMaAdNFgFoCEdAsyZ2fkFOf3V9lChoBkdActONtqHoHWgHTRQBaAhHQLMmrCHRCyB1fZQoaAZHQGzuLgwXZXdoB0v6aAhHQLMnG32EkB11fZQoaAZHQHC19W2gFotoB00MAWgIR0CzJ4bdBSk1dX2UKGgGR0BzVV5cC5mRaAdL62gIR0CzJ5rcTJyRdX2UKGgGR0BwLUtUXHinaAdNIwFoCEdAsyftD6WPcXV9lChoBkdAbtB7cfvF32gHTT8BaAhHQLMogADaGpN1fZQoaAZHQHB2gljVhCtoB00CAWgIR0CzKKaq0dBCdX2UKGgGR0Bv3dbFCLMtaAdNIAFoCEdAsyiuK4x1xXV9lChoBkdAccbwqRU3oGgHS/JoCEdAsyjQzZYgaHV9lChoBkdAcXa0MPSUkmgHTSYBaAhHQLMpAKAavRt1fZQoaAZHQHNcahtcfNloB02DAWgIR0CzKQ6LKmsOdX2UKGgGR0BxAeKvV3EAaAdNOAFoCEdAsykn1wo9cXV9lChoBkdAc0tOKwY+CGgHTQQBaAhHQLMpME4//vR1fZQoaAZHQHMtJuhsZYRoB00FAWgIR0CzKbtD2JzldX2UKGgGR0ByRTlT3qRmaAdNSQFoCEdAsynrMA3kxXV9lChoBkdAcvaj5bhWHWgHTTUBaAhHQLMq1Z6lchV1fZQoaAZHQHIJMfA9FF5oB00eAWgIR0CzK097jT8YdX2UKGgGR0BxrFTIeYD1aAdL/mgIR0CzK0+10DEFdX2UKGgGR0BP8i3ocJdCaAdLv2gIR0CzK2BpDeCTdX2UKGgGR0BxCrUtqYZ3aAdNDQFoCEdAsyt1HnU2DXV9lChoBkdAcvplC1JDmmgHS99oCEdAsyuqV1Oj7HV9lChoBkdAcqJoRZlnRWgHTSQBaAhHQLMsClolD4R1fZQoaAZHQHDKFCPZIxxoB0v7aAhHQLMsLN6w+t91fZQoaAZHQHJj101ZTydoB00dAWgIR0CzLGhYRujzdX2UKGgGR0Bwr5S75Ec9aAdNCwFoCEdAsyx0KiO/+XV9lChoBkdAb88gJTl1bWgHTQUBaAhHQLMsgu3c5811fZQoaAZHQG6wQYUFjd5oB00dAWgIR0CzLLdKIznBdX2UKGgGR0BwRb9qDbrUaAdNCAFoCEdAsyz0kC3gDXV9lChoBkdAcSSlMyrPt2gHTT4BaAhHQLMs9h+vyLB1fZQoaAZHQHENIywfQrtoB00WAWgIR0CzLTZbQkX2dX2UKGgGR0BwP1RekYXPaAdNCAFoCEdAsy4DqfOD8XV9lChoBkdAcO+jJuEVWWgHTQ4BaAhHQLMuCImgJ1J1fZQoaAZHQG0qRJmNBGBoB002AWgIR0CzLiRrWRRudX2UKGgGR0BxFYrf+CK8aAdNEAFoCEdAsy5PdGiHqXV9lChoBkdAcCXaa1Cw8mgHTSsBaAhHQLMuVWRRuTB1fZQoaAZHQHJbG7SRbKRoB00wAWgIR0CzLnfPw/gSdX2UKGgGR0BxWMqDsdDIaAdNAwFoCEdAsy575uZTh3V9lChoBkdAcDN3aBZpz2gHTQcBaAhHQLMupVdonKJ1fZQoaAZHQHDB6GYa5wxoB00RAWgIR0CzLv2Y4Qz2dX2UKGgGR0Bx6uWmgrYoaAdNAQFoCEdAsy8ZRO1v23V9lChoBkdAc4s8cMmWt2gHTTMBaAhHQLMvQP4EfT11fZQoaAZHQHLc9MoMKCxoB00HAWgIR0CzL2Av6CUYdX2UKGgGR0Bwd4PnSv1UaAdNEQFoCEdAsy94EX+ERXV9lChoBkdAczKnivPkaWgHTQ4BaAhHQLMvsqPwNLF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5040ec3ae60a2e7d049c4d171843999b20c066de9c7b93a431299275a65f2b4f
|
3 |
+
size 146728
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -83,7 +83,7 @@
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a350d3e20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a350d3eb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a350d3f40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a350d8040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a350d80d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a350d8160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a350d81f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a350d8280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a350d8310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a350d83a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a350d8430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a350d84c0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1a350dc1c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1688423453608811346,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMLSzxRjmQ+FvL5PKRmhL6oeeE8lToyvQAAAAAAAAAACu+UPv5Rhz+TknE+PJv5vjYsmj6Cz9O8AAAAAAAAAABANcm9HpaOPjH/kju0s6O+8pv2vBJ9mT0AAAAAAAAAAHPFkT3uXpI+CtrsvBDUf76Su/q7VzgGPAAAAAAAAAAAZpx7vI/OcbrlB1k3BNZSMh65LDpA8n22AACAPwAAgD8zh489OM2Du3VhoLzL+aM7pfSmPOUZmrwAAIA/AACAPwDqNrwU5o2809KWu6ovFz1KiwQ+8ynqvQAAgD8AAIA/zdDnu8OxMrpRoLG6yoQXucjuQLrgINg5AACAPwAAgD86Z1a+41YZP4QrBz7q2qy+0hPbvUhG3D0AAAAAAAAAABpETD0DOi4/agIEPf0Gyb5Zkys9BsyqOQAAAAAAAAAA7SYnvucCkz8GKxy/4t27vvZkNb6+fI6+AAAAAAAAAAAgTwW+ivpnPs1FuT0GpEG+ui3ovE5UwDwAAAAAAAAAAOBslz6pvNc+aWopvqw2ir76pAM+dKW+vQAAAAAAAAAAnSapPueIiz+yiQM/qUMcv5qKvj4b5uE7AAAAAAAAAAAAjjY+W4uGvEaNlDp7H8y4oAfmvaD0wbkAAIA/AACAP4CI4D1HRFo+tXiXvrnDhb6o2pi9SPfoPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH7jRUm2LKMAWyUTRkBjAF0lEdAsxlKab4Ju3V9lChoBkdAYJ4CiAUcn2gHTegDaAhHQLMZf1ie/Yd1fZQoaAZHQHBgC4vvjOtoB00IAWgIR0CzGZT2i+L4dX2UKGgGR0Bwmp1ZDArQaAdNJgFoCEdAsxmsSIxgzHV9lChoBkdAcmc04iosI2gHTQcBaAhHQLMaP4Nqgyx1fZQoaAZHQG1OdtEXtShoB0vyaAhHQLMauJ5E+gV1fZQoaAZHQHHDEm2LHdZoB00BAWgIR0CzGsQUYbbUdX2UKGgGR0BydKGFi8WcaAdL5GgIR0CzGzt6HCXQdX2UKGgGR0ByfHe2uxKQaAdNBgFoCEdAsxt6VD8cdnV9lChoBkdAcgx9TP0I1WgHTREBaAhHQLMb7/zasZJ1fZQoaAZHQHFUJ/b0voNoB0vtaAhHQLMcBSM98qp1fZQoaAZHQHIbe1v2oNxoB0v6aAhHQLMcffUF0Pp1fZQoaAZHQHFsOP3i705oB00iAWgIR0CzHID0pVjqdX2UKGgGR0ByHsS6DoQnaAdNMAFoCEdAsxzjJ9y93HV9lChoBkdAb/qtJWeYlmgHTQoBaAhHQLMdJhB7eEZ1fZQoaAZHQHK3m8qWkadoB0vmaAhHQLMdX3dsSCh1fZQoaAZHQHGT19fCyhVoB00LAWgIR0CzHWV6AvtddX2UKGgGR0BxI2pIczZZaAdNGAFoCEdAsx1wo5PuX3V9lChoBkdAcAANJvo/zWgHTT0BaAhHQLMd3TK1XvJ1fZQoaAZHQHGbLwrlNlBoB0vraAhHQLMeCsmOU+t1fZQoaAZHQG5wn7gsK9hoB00KAWgIR0CzHgrZJ04jdX2UKGgGR0Bx60PXkHUuaAdNHwFoCEdAsx5LIeYD1XV9lChoBkdAUU8fhddE9mgHS7JoCEdAsx5sAIY3vXV9lChoBkdAYV9kQPI4l2gHTegDaAhHQLMehznied11fZQoaAZHQHK/roW56MRoB00QAWgIR0CzHpEVJtiydX2UKGgGR0BxNCrMkhRqaAdNJQFoCEdAsx8dnzxwynV9lChoBkdAU7wgzP8htGgHS7toCEdAsx9NNRFZxXV9lChoBkdAcJ3n4fwI+mgHTRsBaAhHQLMfcaTwDvF1fZQoaAZHQHEij72tdRloB0vraAhHQLMfvmf5DZ11fZQoaAZHQHITNZq20AtoB00rAWgIR0CzH/sGC7K8dX2UKGgGR0BwY5jvuw5eaAdNFQFoCEdAsx/9kRSP2nV9lChoBkdAcnPGax5cDGgHTREBaAhHQLMgKE7W/ah1fZQoaAZHQHBLsz2vjfhoB024AWgIR0CzIJY2n88+dX2UKGgGR0BtKh1FH8TBaAdNEAFoCEdAsyCdWLgn+nV9lChoBkdAUy3pwCKaX2gHS85oCEdAsyCfvphWo3V9lChoBkdAb+yZl4C6pmgHTREBaAhHQLMgzdGiHqN1fZQoaAZHQHIs+Wv8qF1oB00RAWgIR0CzIM2u1WsBdX2UKGgGR0ByqtyLhrFgaAdL/GgIR0CzIQl50KZ2dX2UKGgGR0BiNCbjLjgiaAdN6ANoCEdAsyFIwYcebXV9lChoBkdAcfoYEnssx2gHTUEBaAhHQLMhcSWJJoV1fZQoaAZHQHBHRYV6/qRoB01JAWgIR0CzIZ6dlNDddX2UKGgGR0BwWQYrJ8v3aAdNDQFoCEdAsyIKfnOjZnV9lChoBkdAcQaf1Hvtt2gHTSgBaAhHQLMkk+wC8vp1fZQoaAZHQHL8wqNIbwVoB00HAWgIR0CzJKsxCY1HdX2UKGgGR0Bw/inwXqJNaAdNQgFoCEdAsySt5hScb3V9lChoBkdAbsLN7jT8YWgHS/toCEdAsyS8pAlfJHV9lChoBkdAcgknanJkoWgHTRYBaAhHQLMk9RQaaTh1fZQoaAZHQHN9iSFGoaVoB0vmaAhHQLMlFULlV951fZQoaAZHQHCsAMQVbiZoB0vtaAhHQLMlI01IiC91fZQoaAZHQHI2qk690zVoB00hAWgIR0CzJTFU+9rXdX2UKGgGR0ByEv94u9OAaAdL8WgIR0CzJU51A7gbdX2UKGgGR0BwReCAc1fmaAdNHQFoCEdAsyWBPHktE3V9lChoBkdAbsDvKlpGnWgHS/FoCEdAsyWGKHfuTnV9lChoBkdAcz9+3Ytg8mgHTRIBaAhHQLMll3Td+G51fZQoaAZHQG5Zk0rK/21oB00IAWgIR0CzJgpYLb5/dX2UKGgGR0Bwl50hePaMaAdNFgFoCEdAsyZ2fkFOf3V9lChoBkdActONtqHoHWgHTRQBaAhHQLMmrCHRCyB1fZQoaAZHQGzuLgwXZXdoB0v6aAhHQLMnG32EkB11fZQoaAZHQHC19W2gFotoB00MAWgIR0CzJ4bdBSk1dX2UKGgGR0BzVV5cC5mRaAdL62gIR0CzJ5rcTJyRdX2UKGgGR0BwLUtUXHinaAdNIwFoCEdAsyftD6WPcXV9lChoBkdAbtB7cfvF32gHTT8BaAhHQLMogADaGpN1fZQoaAZHQHB2gljVhCtoB00CAWgIR0CzKKaq0dBCdX2UKGgGR0Bv3dbFCLMtaAdNIAFoCEdAsyiuK4x1xXV9lChoBkdAccbwqRU3oGgHS/JoCEdAsyjQzZYgaHV9lChoBkdAcXa0MPSUkmgHTSYBaAhHQLMpAKAavRt1fZQoaAZHQHNcahtcfNloB02DAWgIR0CzKQ6LKmsOdX2UKGgGR0BxAeKvV3EAaAdNOAFoCEdAsykn1wo9cXV9lChoBkdAc0tOKwY+CGgHTQQBaAhHQLMpME4//vR1fZQoaAZHQHMtJuhsZYRoB00FAWgIR0CzKbtD2JzldX2UKGgGR0ByRTlT3qRmaAdNSQFoCEdAsynrMA3kxXV9lChoBkdAcvaj5bhWHWgHTTUBaAhHQLMq1Z6lchV1fZQoaAZHQHIJMfA9FF5oB00eAWgIR0CzK097jT8YdX2UKGgGR0BxrFTIeYD1aAdL/mgIR0CzK0+10DEFdX2UKGgGR0BP8i3ocJdCaAdLv2gIR0CzK2BpDeCTdX2UKGgGR0BxCrUtqYZ3aAdNDQFoCEdAsyt1HnU2DXV9lChoBkdAcvplC1JDmmgHS99oCEdAsyuqV1Oj7HV9lChoBkdAcqJoRZlnRWgHTSQBaAhHQLMsClolD4R1fZQoaAZHQHDKFCPZIxxoB0v7aAhHQLMsLN6w+t91fZQoaAZHQHJj101ZTydoB00dAWgIR0CzLGhYRujzdX2UKGgGR0Bwr5S75Ec9aAdNCwFoCEdAsyx0KiO/+XV9lChoBkdAb88gJTl1bWgHTQUBaAhHQLMsgu3c5811fZQoaAZHQG6wQYUFjd5oB00dAWgIR0CzLLdKIznBdX2UKGgGR0BwRb9qDbrUaAdNCAFoCEdAsyz0kC3gDXV9lChoBkdAcSSlMyrPt2gHTT4BaAhHQLMs9h+vyLB1fZQoaAZHQHENIywfQrtoB00WAWgIR0CzLTZbQkX2dX2UKGgGR0BwP1RekYXPaAdNCAFoCEdAsy4DqfOD8XV9lChoBkdAcO+jJuEVWWgHTQ4BaAhHQLMuCImgJ1J1fZQoaAZHQG0qRJmNBGBoB002AWgIR0CzLiRrWRRudX2UKGgGR0BxFYrf+CK8aAdNEAFoCEdAsy5PdGiHqXV9lChoBkdAcCXaa1Cw8mgHTSsBaAhHQLMuVWRRuTB1fZQoaAZHQHJbG7SRbKRoB00wAWgIR0CzLnfPw/gSdX2UKGgGR0BxWMqDsdDIaAdNAwFoCEdAsy575uZTh3V9lChoBkdAcDN3aBZpz2gHTQcBaAhHQLMupVdonKJ1fZQoaAZHQHDB6GYa5wxoB00RAWgIR0CzLv2Y4Qz2dX2UKGgGR0Bx6uWmgrYoaAdNAQFoCEdAsy8ZRO1v23V9lChoBkdAc4s8cMmWt2gHTTMBaAhHQLMvQP4EfT11fZQoaAZHQHLc9MoMKCxoB00HAWgIR0CzL2Av6CUYdX2UKGgGR0Bwd4PnSv1UaAdNEQFoCEdAsy94EX+ERXV9lChoBkdAczKnivPkaWgHTQ4BaAhHQLMvsqPwNLF1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54e08dce0dde035c501598fe54c5fa9105a762999fddfc3b34c0dd82c1ebaa69
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6ad381ee88965a055bd94a83f1d740f82e00a1dd6130be1d8fffcbe4446337d
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 250.87112930780728, "std_reward": 23.582375705839354, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-03T23:20:09.651088"}
|