{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a350dc1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688423453608811346, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMLSzxRjmQ+FvL5PKRmhL6oeeE8lToyvQAAAAAAAAAACu+UPv5Rhz+TknE+PJv5vjYsmj6Cz9O8AAAAAAAAAABANcm9HpaOPjH/kju0s6O+8pv2vBJ9mT0AAAAAAAAAAHPFkT3uXpI+CtrsvBDUf76Su/q7VzgGPAAAAAAAAAAAZpx7vI/OcbrlB1k3BNZSMh65LDpA8n22AACAPwAAgD8zh489OM2Du3VhoLzL+aM7pfSmPOUZmrwAAIA/AACAPwDqNrwU5o2809KWu6ovFz1KiwQ+8ynqvQAAgD8AAIA/zdDnu8OxMrpRoLG6yoQXucjuQLrgINg5AACAPwAAgD86Z1a+41YZP4QrBz7q2qy+0hPbvUhG3D0AAAAAAAAAABpETD0DOi4/agIEPf0Gyb5Zkys9BsyqOQAAAAAAAAAA7SYnvucCkz8GKxy/4t27vvZkNb6+fI6+AAAAAAAAAAAgTwW+ivpnPs1FuT0GpEG+ui3ovE5UwDwAAAAAAAAAAOBslz6pvNc+aWopvqw2ir76pAM+dKW+vQAAAAAAAAAAnSapPueIiz+yiQM/qUMcv5qKvj4b5uE7AAAAAAAAAAAAjjY+W4uGvEaNlDp7H8y4oAfmvaD0wbkAAIA/AACAP4CI4D1HRFo+tXiXvrnDhb6o2pi9SPfoPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH7jRUm2LKMAWyUTRkBjAF0lEdAsxlKab4Ju3V9lChoBkdAYJ4CiAUcn2gHTegDaAhHQLMZf1ie/Yd1fZQoaAZHQHBgC4vvjOtoB00IAWgIR0CzGZT2i+L4dX2UKGgGR0Bwmp1ZDArQaAdNJgFoCEdAsxmsSIxgzHV9lChoBkdAcmc04iosI2gHTQcBaAhHQLMaP4Nqgyx1fZQoaAZHQG1OdtEXtShoB0vyaAhHQLMauJ5E+gV1fZQoaAZHQHHDEm2LHdZoB00BAWgIR0CzGsQUYbbUdX2UKGgGR0BydKGFi8WcaAdL5GgIR0CzGzt6HCXQdX2UKGgGR0ByfHe2uxKQaAdNBgFoCEdAsxt6VD8cdnV9lChoBkdAcgx9TP0I1WgHTREBaAhHQLMb7/zasZJ1fZQoaAZHQHFUJ/b0voNoB0vtaAhHQLMcBSM98qp1fZQoaAZHQHIbe1v2oNxoB0v6aAhHQLMcffUF0Pp1fZQoaAZHQHFsOP3i705oB00iAWgIR0CzHID0pVjqdX2UKGgGR0ByHsS6DoQnaAdNMAFoCEdAsxzjJ9y93HV9lChoBkdAb/qtJWeYlmgHTQoBaAhHQLMdJhB7eEZ1fZQoaAZHQHK3m8qWkadoB0vmaAhHQLMdX3dsSCh1fZQoaAZHQHGT19fCyhVoB00LAWgIR0CzHWV6AvtddX2UKGgGR0BxI2pIczZZaAdNGAFoCEdAsx1wo5PuX3V9lChoBkdAcAANJvo/zWgHTT0BaAhHQLMd3TK1XvJ1fZQoaAZHQHGbLwrlNlBoB0vraAhHQLMeCsmOU+t1fZQoaAZHQG5wn7gsK9hoB00KAWgIR0CzHgrZJ04jdX2UKGgGR0Bx60PXkHUuaAdNHwFoCEdAsx5LIeYD1XV9lChoBkdAUU8fhddE9mgHS7JoCEdAsx5sAIY3vXV9lChoBkdAYV9kQPI4l2gHTegDaAhHQLMehznied11fZQoaAZHQHK/roW56MRoB00QAWgIR0CzHpEVJtiydX2UKGgGR0BxNCrMkhRqaAdNJQFoCEdAsx8dnzxwynV9lChoBkdAU7wgzP8htGgHS7toCEdAsx9NNRFZxXV9lChoBkdAcJ3n4fwI+mgHTRsBaAhHQLMfcaTwDvF1fZQoaAZHQHEij72tdRloB0vraAhHQLMfvmf5DZ11fZQoaAZHQHITNZq20AtoB00rAWgIR0CzH/sGC7K8dX2UKGgGR0BwY5jvuw5eaAdNFQFoCEdAsx/9kRSP2nV9lChoBkdAcnPGax5cDGgHTREBaAhHQLMgKE7W/ah1fZQoaAZHQHBLsz2vjfhoB024AWgIR0CzIJY2n88+dX2UKGgGR0BtKh1FH8TBaAdNEAFoCEdAsyCdWLgn+nV9lChoBkdAUy3pwCKaX2gHS85oCEdAsyCfvphWo3V9lChoBkdAb+yZl4C6pmgHTREBaAhHQLMgzdGiHqN1fZQoaAZHQHIs+Wv8qF1oB00RAWgIR0CzIM2u1WsBdX2UKGgGR0ByqtyLhrFgaAdL/GgIR0CzIQl50KZ2dX2UKGgGR0BiNCbjLjgiaAdN6ANoCEdAsyFIwYcebXV9lChoBkdAcfoYEnssx2gHTUEBaAhHQLMhcSWJJoV1fZQoaAZHQHBHRYV6/qRoB01JAWgIR0CzIZ6dlNDddX2UKGgGR0BwWQYrJ8v3aAdNDQFoCEdAsyIKfnOjZnV9lChoBkdAcQaf1Hvtt2gHTSgBaAhHQLMkk+wC8vp1fZQoaAZHQHL8wqNIbwVoB00HAWgIR0CzJKsxCY1HdX2UKGgGR0Bw/inwXqJNaAdNQgFoCEdAsySt5hScb3V9lChoBkdAbsLN7jT8YWgHS/toCEdAsyS8pAlfJHV9lChoBkdAcgknanJkoWgHTRYBaAhHQLMk9RQaaTh1fZQoaAZHQHN9iSFGoaVoB0vmaAhHQLMlFULlV951fZQoaAZHQHCsAMQVbiZoB0vtaAhHQLMlI01IiC91fZQoaAZHQHI2qk690zVoB00hAWgIR0CzJTFU+9rXdX2UKGgGR0ByEv94u9OAaAdL8WgIR0CzJU51A7gbdX2UKGgGR0BwReCAc1fmaAdNHQFoCEdAsyWBPHktE3V9lChoBkdAbsDvKlpGnWgHS/FoCEdAsyWGKHfuTnV9lChoBkdAcz9+3Ytg8mgHTRIBaAhHQLMll3Td+G51fZQoaAZHQG5Zk0rK/21oB00IAWgIR0CzJgpYLb5/dX2UKGgGR0Bwl50hePaMaAdNFgFoCEdAsyZ2fkFOf3V9lChoBkdActONtqHoHWgHTRQBaAhHQLMmrCHRCyB1fZQoaAZHQGzuLgwXZXdoB0v6aAhHQLMnG32EkB11fZQoaAZHQHC19W2gFotoB00MAWgIR0CzJ4bdBSk1dX2UKGgGR0BzVV5cC5mRaAdL62gIR0CzJ5rcTJyRdX2UKGgGR0BwLUtUXHinaAdNIwFoCEdAsyftD6WPcXV9lChoBkdAbtB7cfvF32gHTT8BaAhHQLMogADaGpN1fZQoaAZHQHB2gljVhCtoB00CAWgIR0CzKKaq0dBCdX2UKGgGR0Bv3dbFCLMtaAdNIAFoCEdAsyiuK4x1xXV9lChoBkdAccbwqRU3oGgHS/JoCEdAsyjQzZYgaHV9lChoBkdAcXa0MPSUkmgHTSYBaAhHQLMpAKAavRt1fZQoaAZHQHNcahtcfNloB02DAWgIR0CzKQ6LKmsOdX2UKGgGR0BxAeKvV3EAaAdNOAFoCEdAsykn1wo9cXV9lChoBkdAc0tOKwY+CGgHTQQBaAhHQLMpME4//vR1fZQoaAZHQHMtJuhsZYRoB00FAWgIR0CzKbtD2JzldX2UKGgGR0ByRTlT3qRmaAdNSQFoCEdAsynrMA3kxXV9lChoBkdAcvaj5bhWHWgHTTUBaAhHQLMq1Z6lchV1fZQoaAZHQHIJMfA9FF5oB00eAWgIR0CzK097jT8YdX2UKGgGR0BxrFTIeYD1aAdL/mgIR0CzK0+10DEFdX2UKGgGR0BP8i3ocJdCaAdLv2gIR0CzK2BpDeCTdX2UKGgGR0BxCrUtqYZ3aAdNDQFoCEdAsyt1HnU2DXV9lChoBkdAcvplC1JDmmgHS99oCEdAsyuqV1Oj7HV9lChoBkdAcqJoRZlnRWgHTSQBaAhHQLMsClolD4R1fZQoaAZHQHDKFCPZIxxoB0v7aAhHQLMsLN6w+t91fZQoaAZHQHJj101ZTydoB00dAWgIR0CzLGhYRujzdX2UKGgGR0Bwr5S75Ec9aAdNCwFoCEdAsyx0KiO/+XV9lChoBkdAb88gJTl1bWgHTQUBaAhHQLMsgu3c5811fZQoaAZHQG6wQYUFjd5oB00dAWgIR0CzLLdKIznBdX2UKGgGR0BwRb9qDbrUaAdNCAFoCEdAsyz0kC3gDXV9lChoBkdAcSSlMyrPt2gHTT4BaAhHQLMs9h+vyLB1fZQoaAZHQHENIywfQrtoB00WAWgIR0CzLTZbQkX2dX2UKGgGR0BwP1RekYXPaAdNCAFoCEdAsy4DqfOD8XV9lChoBkdAcO+jJuEVWWgHTQ4BaAhHQLMuCImgJ1J1fZQoaAZHQG0qRJmNBGBoB002AWgIR0CzLiRrWRRudX2UKGgGR0BxFYrf+CK8aAdNEAFoCEdAsy5PdGiHqXV9lChoBkdAcCXaa1Cw8mgHTSsBaAhHQLMuVWRRuTB1fZQoaAZHQHJbG7SRbKRoB00wAWgIR0CzLnfPw/gSdX2UKGgGR0BxWMqDsdDIaAdNAwFoCEdAsy575uZTh3V9lChoBkdAcDN3aBZpz2gHTQcBaAhHQLMupVdonKJ1fZQoaAZHQHDB6GYa5wxoB00RAWgIR0CzLv2Y4Qz2dX2UKGgGR0Bx6uWmgrYoaAdNAQFoCEdAsy8ZRO1v23V9lChoBkdAc4s8cMmWt2gHTTMBaAhHQLMvQP4EfT11fZQoaAZHQHLc9MoMKCxoB00HAWgIR0CzL2Av6CUYdX2UKGgGR0Bwd4PnSv1UaAdNEQFoCEdAsy94EX+ERXV9lChoBkdAczKnivPkaWgHTQ4BaAhHQLMvsqPwNLF1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}