--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: gradientai/Llama-3-8B-Instruct-262k metrics: - accuracy model-index: - name: th_cl_23epochs_lora_pos_neg results: [] --- # th_cl_23epochs_lora_pos_neg This model is a fine-tuned version of [gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1121 - Balanced Accuracy: 0.47 - Accuracy: 0.4667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------:| | 0.5546 | 1.0 | 32 | 1.0124 | 0.4911 | 0.4889 | | 0.3157 | 2.0 | 64 | 1.0066 | 0.4722 | 0.4667 | | 0.1355 | 3.0 | 96 | 0.9881 | 0.5977 | 0.6 | | 0.0512 | 4.0 | 128 | 1.1006 | 0.5536 | 0.5556 | | 0.0605 | 5.0 | 160 | 1.1121 | 0.47 | 0.4667 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1