--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - diffusers-training - lora inference: true --- # LoRA text2image fine-tuning - spockren/naruto-lora-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the lambdalabs/naruto-blip-captions dataset. You can find some example images in the following. ![img_0](./naruto_with_blue_eyes_1.png) ![img_1](./naruto_with_blue_eyes_2.png) ![img_2](./naruto_with_blue_eyes_3.png) ![img_3](./naruto_with_blue_eyes_4.png) LoRA for the text encoder was enabled: False. Special VAE used for training: None. ## Intended uses & limitations #### How to use ```python from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda") pipeline.load_lora_weights("spockren/naruto_lora_xl", weight_name="pytorch_lora_weights.safetensors") image = pipeline("A naruto with blue eyes").images[0] image ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details ```shell export MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" export OUTPUT_DIR="./xl_lora/naruto" export HUB_MODEL_ID="naruto-lora-xl" export DATASET_NAME="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image_lora_sdxl.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME \ --dataloader_num_workers=8 \ --resolution=512 \ --center_crop \ --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=15000 \ --learning_rate=1e-04 \ --max_grad_norm=1 \ --lr_scheduler="cosine" \ --lr_warmup_steps=0 \ --output_dir=${OUTPUT_DIR} \ --push_to_hub \ --hub_model_id=${HUB_MODEL_ID} \ --checkpointing_steps=500 \ --validation_prompt="A naruto with blue eyes." \ --checkpoints_total_limit=6 \ --seed=1337 ```