LunarLanderV2-expert / config.json
spoggy's picture
First test
2230722
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e572f39990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e572f39a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e572f39ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e572f39b40>", "_build": "<function ActorCriticPolicy._build at 0x79e572f39bd0>", "forward": "<function ActorCriticPolicy.forward at 0x79e572f39c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e572f39cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e572f39d80>", "_predict": "<function ActorCriticPolicy._predict at 0x79e572f39e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e572f39ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e572f39f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e572f39fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e5730d68c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697813491137417233, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAI2d071gU7s+7a9PPmyQbr7WF8Y921skPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9hdwNsnAuMAWyUTR0BjAF0lEdAnkzEjxCpm3V9lChoBkdAcYlTKDCgsmgHTQ8BaAhHQJ5PdDv3JxN1fZQoaAZHQHGk45ksjFBoB00GAWgIR0CeUYGfPHDKdX2UKGgGR0Bw+08cMmWuaAdNEgFoCEdAnlOEiILw4XV9lChoBkdAchk24NI9T2gHS+1oCEdAnlVFgH/tIHV9lChoBkdAcYO+zdDYy2gHTQ8BaAhHQJ5Y/3JxNqR1fZQoaAZHQHD0VS4vvjRoB0vzaAhHQJ5bF73PAwh1fZQoaAZHQHCUpwGW2PVoB00dAWgIR0CeXYlD4QBgdX2UKGgGR0ByC0lv60pmaAdNRwFoCEdAnmBIU34sVnV9lChoBkdAcFtYxL0z02gHTSsBaAhHQJ5kjyLAHml1fZQoaAZHQHDtEqc3EQ5oB00iAWgIR0CeZkCHh0hedX2UKGgGR0BwUxXHR1HOaAdNHwFoCEdAnmfXZ9NN8HV9lChoBkdAcCo7fHggo2gHTQ0BaAhHQJ5qmCxu89R1fZQoaAZHQFTiLg4wRGtoB0u+aAhHQJ5rpDSgGr11fZQoaAZHQHFMmM4tHx1oB0v2aAhHQJ5tCxHG0eF1fZQoaAZHQHCID3h4t6JoB00/AWgIR0CebtFvAGjcdX2UKGgGR0By5Ytcv/R3aAdNSgFoCEdAnnHeIInjQ3V9lChoBkdAcfLYYixFAmgHTSEBaAhHQJ5zfmdRR/F1fZQoaAZHQHA8943WFvhoB01FAWgIR0CedVMrEtNBdX2UKGgGR0Bw7s4EOiFkaAdNBgFoCEdAnnfvTw2ETXV9lChoBkdAczwQbuMMqmgHTRwBaAhHQJ55lZwGW2R1fZQoaAZHQHG2WmgrYoRoB00BAWgIR0Ceewc+aBqcdX2UKGgGR0BwpWLjxTbWaAdNQgFoCEdAnnznzYmLL3V9lChoBkdAcmUkupS75GgHTTEBaAhHQJ5/vaufVZt1fZQoaAZHQHCzpMpPRAtoB01ZAWgIR0CegbPPLPlddX2UKGgGR0BzESk8A7xNaAdL6WgIR0CegvukUKzBdX2UKGgGR0BygCLm6oVEaAdL+mgIR0CehFsolUqAdX2UKGgGR0BxcVxS5y2haAdNQgFoCEdAnodccENe+nV9lChoBkdAcf9wuuieumgHTTIBaAhHQJ6JGUornT11fZQoaAZHQHG/sPz4DcNoB00kAWgIR0CeirYfnwG4dX2UKGgGR0BvWwwsXizcaAdNOQFoCEdAno36BNEgGXV9lChoBkdAcLafmcOLBWgHTTsBaAhHQJ6QO7Xg9/11fZQoaAZHQG3oIS13MZBoB002AWgIR0CekqUd7v5QdX2UKGgGR0ByuSsIVuaXaAdNYAFoCEdAnpcWrbQC0XV9lChoBkdAco3MVUModGgHTQYBaAhHQJ6ZWXu3MIN1fZQoaAZHQGzW5hjOLR9oB00SAWgIR0Cem68Empl0dX2UKGgGR0BvnHGMn7YTaAdNOQFoCEdAnp5b+kxh2HV9lChoBkdAca11WKdhAmgHTQUBaAhHQJ6idvkzXSV1fZQoaAZHQHIXOYUnG85oB01SAWgIR0CepGB/qgRLdX2UKGgGR0BuIpmK64DtaAdNBQFoCEdAnqXuWv8qF3V9lChoBkdAcOaPWxyGSWgHS/RoCEdAnqhzo6jnFHV9lChoBkdAcvwIPK+zt2gHTSoBaAhHQJ6qIH3UQTV1fZQoaAZHQHG4uIAOrhloB00QAWgIR0Ceq6bu+h4/dX2UKGgGR0BKrW5QP7N0aAdL+GgIR0CerQRqoIfKdX2UKGgGR0Bw8hTKkl/paAdNswFoCEdAnrCWcJ+lTHV9lChoBkdAcXdJ8fFJhGgHTTYBaAhHQJ6yWfywwCd1fZQoaAZHQHD7Ssny/bloB023AWgIR0CetMFn7HhkdX2UKGgGR0BwlHU5MlC1aAdNJwFoCEdAnrebSqlxfnV9lChoBkdAcAubxEv0y2gHTRIBaAhHQJ65K1TisGR1fZQoaAZHQHGYL2QGOdZoB00GAWgIR0Ceuq1XeWOZdX2UKGgGR0ByEzb1yvLYaAdNAQFoCEdAnr1Judf9gnV9lChoBkdAcOC/qxC6YmgHTU4BaAhHQJ6/KX1J17p1fZQoaAZHQHIb/WMCLdhoB00bAWgIR0CewLhg3LmqdX2UKGgGR0BvqOoaUA1faAdNIwFoCEdAnsJtECvHLnV9lChoBkdAUnlTl1bJOmgHS7JoCEdAnsSgiNbTt3V9lChoBkdAcBI2DQJHAmgHTR4BaAhHQJ7GT5AQg9x1fZQoaAZHQHDSX1BdD6ZoB017AWgIR0CeyHw2ETQFdX2UKGgGR0Bw8tWaMJhOaAdNKgFoCEdAnsvWlMyrP3V9lChoBkdAci+MpgCwKWgHTScBaAhHQJ7OBPIn0Cl1fZQoaAZHQG7nf2TPjXFoB00BAWgIR0Cez/uX/o7ndX2UKGgGR0BxnDCfpUxVaAdNBQFoCEdAntH1OO8013V9lChoBkdAccaVsk6cRWgHS/doCEdAntW8JQcghnV9lChoBkdAcqd8scyWRmgHTSMBaAhHQJ7YNDKHO8l1fZQoaAZHQHAo2TcIqsloB007AWgIR0Ce2tSpiqhldX2UKGgGR0AmTbM5fdAPaAdLyGgIR0Ce3ImvGIbgdX2UKGgGR0Bx9QxO+IuXaAdNNgFoCEdAnuCVZs9B8nV9lChoBkdAcQGFtsN2DGgHTSkBaAhHQJ7iURbr1NB1fZQoaAZHQG5ryDh99c9oB00cAWgIR0Ce4+wFkhA4dX2UKGgGR0ByJU7lq8DkaAdNEAFoCEdAnuWIj4YaYXV9lChoBkdAcYVkNnXd02gHTTcBaAhHQJ7omxmkFfR1fZQoaAZHQG+NifpUxVRoB00CAWgIR0Ce6gPikwevdX2UKGgGR0ByuuhysCDFaAdL+WgIR0Ce61iiqQzUdX2UKGgGR0ByN9zYEnstaAdNBwFoCEdAnu33M2WIGnV9lChoBkdAcUXSH/Lkj2gHTVUBaAhHQJ7v1nh86WB1fZQoaAZHQHHjqMBIWgxoB00rAWgIR0Ce8XnXNC7cdX2UKGgGR0BvD4zSCvovaAdNjAFoCEdAnvTphBqsVHV9lChoBkdAcxXgydnTRmgHTRUBaAhHQJ72kkt29td1fZQoaAZHQHK5CyY5T61oB00EAWgIR0Ce+BcZLqUvdX2UKGgGR0BxAyKaXrt3aAdNRwFoCEdAnvnuavzOHHV9lChoBkdAcmyLVFx4p2gHTRIBaAhHQJ78qk8A7xN1fZQoaAZHQEL1K+zt1IRoB0veaAhHQJ793r0J4Sp1fZQoaAZHQFIiQMx46fdoB0vdaAhHQJ7/D+717IF1fZQoaAZHQHEhsYEW69VoB0v+aAhHQJ8AfBSDRMN1fZQoaAZHQHOJWrXDm8xoB00gAWgIR0CfAyXqqwQldX2UKGgGR0BQl/bO/tY0aAdLrGgIR0CfBCSh8IAwdX2UKGgGR0BUtp7CzkZKaAdLl2gIR0CfBP0vXbuddX2UKGgGR0BuKkH8jzI4aAdL+mgIR0CfBlxJNCZ4dX2UKGgGR0BvHrMNc4YKaAdNBAFoCEdAnwfV7pmmL3V9lChoBkdAcFCsCDEm6WgHS+BoCEdAnwsaKtPpIXV9lChoBkdAcZcgf2bobGgHTQEBaAhHQJ8NAuCf6Gh1fZQoaAZHQEJchi9Zid9oB0vCaAhHQJ8OXshPj4p1fZQoaAZHQFQgnuiN83NoB0uyaAhHQJ8PsGkep4t1fZQoaAZHQG6yr3bmEGtoB00KAWgIR0CfE6oX9BKMdX2UKGgGR0BylTIBBAv+aAdNAQFoCEdAnxXa99MK1HV9lChoBkdAbxFF9a2Wp2gHTQMBaAhHQJ8YCcPOIIp1fZQoaAZHQHH2TFVDKHRoB004AWgIR0CfGrlLeyiVdX2UKGgGR0Bxbv9hqj8DaAdNPQFoCEdAnx41cQiA2HV9lChoBkdAcJZvK2a2F2gHS/VoCEdAnx+QC4jKPnV9lChoBkdAcVbBuXNTtWgHTUgBaAhHQJ8hcBYFJQN1fZQoaAZHQFWBUlRgqmVoB0ueaAhHQJ8iTPt2LYR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3912, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}