File size: 9,716 Bytes
f81d611 9cd6367 f81d611 9cd6367 f81d611 9cd6367 f81d611 9cd6367 062997f 9cd6367 a956670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
library_name: transformers
license: cc-by-nc-4.0
language:
- ko
- en
---
# Ko-Qwen2-7B-Instruct
<!-- Provide a quick summary of what the model is/does. -->
<!--This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).-->
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model is a Supervised fine-tuned version of [Qwen2-7B -Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) with DeepSpeed and trl for korean.
### Trained Data
- Trained with public data and private data and Generated data (about 50k)
### Usage
```python
from transformers import TextStreamer, pipeline, AutoTokenizer, AutoModelForCausalLM
model_id = 'spow12/Ko-Qwen2-7B-Instruct'
tokenizer = AutoTokenizer.from_pretrained(model_id)
# %%
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map='auto',
)
model.eval()
pipe = pipeline("conversational", model=model, tokenizer=tokenizer, device_map='auto')
streamer = TextStreamer(tokenizer)
generation_configs = dict(
max_new_tokens=2048,
num_return_sequences=1,
temperature=0.1,
# early_stopping=True,
repetition_penalty=1.2,
num_beams=1,
do_sample=True,
top_k=20,
top_p=0.9,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
streamer=streamer
)
sys_message = """λΉμ μ μΉμ ν μ±λ΄μΌλ‘μ μλλ°©μ μμ²μ μ΅λν μμΈνκ³ μΉμ νκ² λ΅ν΄μΌν©λλ€.
μ¬μ©μκ° μ 곡νλ μ 보λ₯Ό μΈμ¬νκ² λΆμνμ¬ μ¬μ©μμ μλλ₯Ό μ μνκ² νμ
νκ³ κ·Έμ λ°λΌ λ΅λ³μ μμ±ν΄μΌν©λλ€.
νμ λ§€μ° μμ°μ€λ¬μ΄ νκ΅μ΄λ‘ μλ΅νμΈμ."""
message = [
{
'role': "system",
'content': sys_message
},
{
'role': 'user',
'content': "νμ¬μ κ²½μ μν©μ λν΄ μ΄λ»κ² μκ°ν΄?."
}
]
conversation = pipe(message, **generation_configs)
conversation[-1]
```
```
<|im_start|>system
λΉμ μ μΉμ ν μ±λ΄μΌλ‘μ μλλ°©μ μμ²μ μ΅λν μμΈνκ³ μΉμ νκ² λ΅ν΄μΌν©λλ€.
μ¬μ©μκ° μ 곡νλ μ 보λ₯Ό μΈμ¬νκ² λΆμνμ¬ μ¬μ©μμ μλλ₯Ό μ μνκ² νμ
νκ³ κ·Έμ λ°λΌ λ΅λ³μ μμ±ν΄μΌν©λλ€.
νμ λ§€μ° μμ°μ€λ¬μ΄ νκ΅μ΄λ‘ μλ΅νμΈμ.<|im_end|>
<|im_start|>user
νμ¬μ κ²½μ μν©μ λν΄ μ΄λ»κ² μκ°ν΄?<|im_end|>
<|im_start|>assistant
μ λ μΈκ³΅μ§λ₯μ΄κΈ° λλ¬Έμ νμ¬μ κ²½μ μν©μ΄λ κ°μΈμ μΈ μ견μ κ°μ§κ³ μμ§ μμ΅λλ€. νμ§λ§, μ΅κ·Όμλ μ μΈκ³μ μΌλ‘ κ²½κΈ°κ° μ΄λ €μμ§κ³ μλ μΆμΈμ
λλ€. λ§μ λλΌλ€μ΄ λμ²νκΈ° μν λ€μν μ μ±
κ³Ό μ‘°μΉλ€μ μννκ³ μμ΅λλ€. μ΄λ¬ν μν©μμ κ°μ μμ μ μλμ λ°ννλ©° μ΄μκ°μκΈΈ λ°λλλ€.<|im_end|>
```
### License
This model is licensed under the cc-by-nc-4.0. which allows others to share and adapt the model for non-commercial purposes.
# Here is Original Readme.md
# Qwen2-7B-Instruct
## Introduction
Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.
Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
<br>
## Model Details
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
## Training details
We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
## Requirements
The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Processing Long Texts
To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
1. **Install vLLM**: You can install vLLM by running the following command.
```bash
pip install "vllm>=0.4.3"
```
Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
```json
{
"architectures": [
"Qwen2ForCausalLM"
],
// ...
"vocab_size": 152064,
// adding the following snippets
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
This snippet enable YARN to support longer contexts.
3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
```bash
python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-7B-Instruct --model path/to/weights
```
Then you can access the Chat API by:
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen2-7B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your Long Input Here."}
]
}'
```
For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
**Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation
We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:
| Datasets | Llama-3-8B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Qwen1.5-7B-Chat | Qwen2-7B-Instruct |
| :--- | :---: | :---: | :---: | :---: | :---: |
| _**English**_ | | | | | |
| MMLU | 68.4 | 69.5 | **72.4** | 59.5 | 70.5 |
| MMLU-Pro | 41.0 | - | - | 29.1 | **44.1** |
| GPQA | **34.2** | - | **-** | 27.8 | 25.3 |
| TheroemQA | 23.0 | - | - | 14.1 | **25.3** |
| MT-Bench | 8.05 | 8.20 | 8.35 | 7.60 | **8.41** |
| _**Coding**_ | | | | | |
| Humaneval | 62.2 | 66.5 | 71.8 | 46.3 | **79.9** |
| MBPP | **67.9** | - | - | 48.9 | 67.2 |
| MultiPL-E | 48.5 | - | - | 27.2 | **59.1** |
| Evalplus | 60.9 | - | - | 44.8 | **70.3** |
| LiveCodeBench | 17.3 | - | - | 6.0 | **26.6** |
| _**Mathematics**_ | | | | | |
| GSM8K | 79.6 | **84.8** | 79.6 | 60.3 | 82.3 |
| MATH | 30.0 | 47.7 | **50.6** | 23.2 | 49.6 |
| _**Chinese**_ | | | | | |
| C-Eval | 45.9 | - | 75.6 | 67.3 | **77.2** |
| AlignBench | 6.20 | 6.90 | 7.01 | 6.20 | **7.21** |
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{qwen2,
title={Qwen2 Technical Report},
year={2024}
}
``` |