--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Sep26-Mixat-whisper-lg-3-transliteration results: [] --- # Sep26-Mixat-whisper-lg-3-transliteration This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7321 - Wer: 40.6571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7747 | 0.4292 | 100 | 0.4311 | 36.6994 | | 0.4882 | 0.8584 | 200 | 0.4418 | 35.7241 | | 0.3749 | 1.2876 | 300 | 0.4387 | 40.5617 | | 0.3644 | 1.7167 | 400 | 0.4506 | 40.1608 | | 0.3451 | 2.1459 | 500 | 0.4571 | 42.6225 | | 0.2678 | 2.5751 | 600 | 0.4558 | 38.1490 | | 0.2737 | 3.0043 | 700 | 0.4406 | 38.5621 | | 0.1576 | 3.4335 | 800 | 0.4937 | 42.0456 | | 0.1653 | 3.8627 | 900 | 0.4995 | 41.7987 | | 0.1113 | 4.2918 | 1000 | 0.5667 | 41.4100 | | 0.0957 | 4.7210 | 1100 | 0.5606 | 39.9237 | | 0.0817 | 5.1502 | 1200 | 0.6160 | 41.6984 | | 0.0534 | 5.5794 | 1300 | 0.6003 | 42.2313 | | 0.0549 | 6.0086 | 1400 | 0.5908 | 40.9724 | | 0.0315 | 6.4378 | 1500 | 0.6655 | 40.5031 | | 0.0364 | 6.8670 | 1600 | 0.7179 | 43.4389 | | 0.0278 | 7.2961 | 1700 | 0.6839 | 42.8009 | | 0.0251 | 7.7253 | 1800 | 0.6803 | 42.9891 | | 0.0228 | 8.1545 | 1900 | 0.7166 | 42.3047 | | 0.0197 | 8.5837 | 2000 | 0.7321 | 40.6571 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1