File size: 2,054 Bytes
0892cb0
 
2a56602
0892cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a56602
0892cb0
 
 
 
 
 
 
2a56602
0892cb0
2a56602
 
0892cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a56602
 
 
 
 
0892cb0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: sravan-gorugantu/model2024-05-20
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: model2024-05-22
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9649862000117446
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model2024-05-22

This model is a fine-tuned version of [sravan-gorugantu/model2024-05-20](https://huggingface.co/sravan-gorugantu/model2024-05-20) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1062
- Accuracy: 0.9650

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1566        | 1.0   | 532  | 0.1501          | 0.9494   |
| 0.1596        | 2.0   | 1064 | 0.1235          | 0.9583   |
| 0.1086        | 3.0   | 1596 | 0.1336          | 0.9549   |
| 0.1029        | 4.0   | 2129 | 0.1095          | 0.9643   |
| 0.095         | 5.0   | 2660 | 0.1062          | 0.9650   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2