srikarvar commited on
Commit
2e89f26
1 Parent(s): 3e7f874

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: srikarvar/fine_tuned_model_5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:560
42
+ - loss:MultipleNegativesRankingLoss
43
+ widget:
44
+ - source_sentence: The next move is to acquire the dataset and delineate the divisions.
45
+ sentences:
46
+ - The next step is to download the dataset and define the splits.
47
+ - The `batch_id` parameter is used to specify a batch specific to the recipe code.
48
+ It is used to update the storage directory when the recipe instructions are modified.
49
+ - The Instructions guide is divided into sections such as Overview, Tutorials, How-to
50
+ guides, Settings, Interface, Hardware, System repository, Conceptual guides, and
51
+ Reference.
52
+ - source_sentence: The PaperInfo holds the data of a research paper, which may include
53
+ its title, abstract, and reference list.
54
+ sentences:
55
+ - Parquet is a language-agnostic file format that enables efficient storage and
56
+ querying of data tables.
57
+ - The purpose of the food processor in the kitchen is to chop and blend ingredients
58
+ quickly and efficiently.
59
+ - A research paper's information is stored inside PaperInfo and can include information
60
+ such as the paper's title, abstract, and references.
61
+ - source_sentence: This manual is devoted to constructing a personal finance tracker.
62
+ sentences:
63
+ - The `map()` function in the financial package supports processing large amounts
64
+ of transactions, speeding up data analysis.
65
+ - The manual is about building a personal finance tracker.
66
+ - No, ITEMCODE is not available in version 3.5.0 of the documentation.
67
+ - source_sentence: The reader may find it more advantageous to not specify a section
68
+ when browsing a collection, as a default section that displays all genres may
69
+ be the most suitable choice if no particular genre is requested.
70
+ sentences:
71
+ - The PlantCare manual provides guidance on how to plant, water, prune, and fertilize
72
+ different species of plants.
73
+ - It may be more convenient for the reader to not specify a section when browsing
74
+ a collection because a suitable default may be an aggregated section that displays
75
+ all genres if the reader doesn’t request a particular one.
76
+ - If you want to switch from a ProductList to an InventoryList, you can simply create
77
+ a new InventoryList object from your existing data using the appropriate method
78
+ for your data source.
79
+ - source_sentence: This framework has a strong connection with cloud platforms, making
80
+ it simple to deploy and share models with the developer community.
81
+ sentences:
82
+ - Yes, the framework is deeply integrated with cloud-based platforms, allowing for
83
+ easy deployment and sharing with the developer community.
84
+ - UserRole data is properly converted to arrays.
85
+ - You can find information about creating a research paper card in the /docs/papers/v2.10.0/paper_card
86
+ document.
87
+ model-index:
88
+ - name: SentenceTransformer based on srikarvar/fine_tuned_model_5
89
+ results:
90
+ - task:
91
+ type: information-retrieval
92
+ name: Information Retrieval
93
+ dataset:
94
+ name: e5 cogcache small refined
95
+ type: e5-cogcache-small-refined
96
+ metrics:
97
+ - type: cosine_accuracy@1
98
+ value: 1.0
99
+ name: Cosine Accuracy@1
100
+ - type: cosine_accuracy@3
101
+ value: 1.0
102
+ name: Cosine Accuracy@3
103
+ - type: cosine_accuracy@5
104
+ value: 1.0
105
+ name: Cosine Accuracy@5
106
+ - type: cosine_accuracy@10
107
+ value: 1.0
108
+ name: Cosine Accuracy@10
109
+ - type: cosine_precision@1
110
+ value: 1.0
111
+ name: Cosine Precision@1
112
+ - type: cosine_precision@3
113
+ value: 0.3333333333333333
114
+ name: Cosine Precision@3
115
+ - type: cosine_precision@5
116
+ value: 0.19999999999999998
117
+ name: Cosine Precision@5
118
+ - type: cosine_precision@10
119
+ value: 0.09999999999999999
120
+ name: Cosine Precision@10
121
+ - type: cosine_recall@1
122
+ value: 1.0
123
+ name: Cosine Recall@1
124
+ - type: cosine_recall@3
125
+ value: 1.0
126
+ name: Cosine Recall@3
127
+ - type: cosine_recall@5
128
+ value: 1.0
129
+ name: Cosine Recall@5
130
+ - type: cosine_recall@10
131
+ value: 1.0
132
+ name: Cosine Recall@10
133
+ - type: cosine_ndcg@10
134
+ value: 1.0
135
+ name: Cosine Ndcg@10
136
+ - type: cosine_mrr@10
137
+ value: 1.0
138
+ name: Cosine Mrr@10
139
+ - type: cosine_map@100
140
+ value: 1.0
141
+ name: Cosine Map@100
142
+ - type: dot_accuracy@1
143
+ value: 1.0
144
+ name: Dot Accuracy@1
145
+ - type: dot_accuracy@3
146
+ value: 1.0
147
+ name: Dot Accuracy@3
148
+ - type: dot_accuracy@5
149
+ value: 1.0
150
+ name: Dot Accuracy@5
151
+ - type: dot_accuracy@10
152
+ value: 1.0
153
+ name: Dot Accuracy@10
154
+ - type: dot_precision@1
155
+ value: 1.0
156
+ name: Dot Precision@1
157
+ - type: dot_precision@3
158
+ value: 0.3333333333333333
159
+ name: Dot Precision@3
160
+ - type: dot_precision@5
161
+ value: 0.19999999999999998
162
+ name: Dot Precision@5
163
+ - type: dot_precision@10
164
+ value: 0.09999999999999999
165
+ name: Dot Precision@10
166
+ - type: dot_recall@1
167
+ value: 1.0
168
+ name: Dot Recall@1
169
+ - type: dot_recall@3
170
+ value: 1.0
171
+ name: Dot Recall@3
172
+ - type: dot_recall@5
173
+ value: 1.0
174
+ name: Dot Recall@5
175
+ - type: dot_recall@10
176
+ value: 1.0
177
+ name: Dot Recall@10
178
+ - type: dot_ndcg@10
179
+ value: 1.0
180
+ name: Dot Ndcg@10
181
+ - type: dot_mrr@10
182
+ value: 1.0
183
+ name: Dot Mrr@10
184
+ - type: dot_map@100
185
+ value: 1.0
186
+ name: Dot Map@100
187
+ - type: cosine_accuracy@1
188
+ value: 1.0
189
+ name: Cosine Accuracy@1
190
+ - type: cosine_accuracy@3
191
+ value: 1.0
192
+ name: Cosine Accuracy@3
193
+ - type: cosine_accuracy@5
194
+ value: 1.0
195
+ name: Cosine Accuracy@5
196
+ - type: cosine_accuracy@10
197
+ value: 1.0
198
+ name: Cosine Accuracy@10
199
+ - type: cosine_precision@1
200
+ value: 1.0
201
+ name: Cosine Precision@1
202
+ - type: cosine_precision@3
203
+ value: 0.3333333333333333
204
+ name: Cosine Precision@3
205
+ - type: cosine_precision@5
206
+ value: 0.19999999999999998
207
+ name: Cosine Precision@5
208
+ - type: cosine_precision@10
209
+ value: 0.09999999999999999
210
+ name: Cosine Precision@10
211
+ - type: cosine_recall@1
212
+ value: 1.0
213
+ name: Cosine Recall@1
214
+ - type: cosine_recall@3
215
+ value: 1.0
216
+ name: Cosine Recall@3
217
+ - type: cosine_recall@5
218
+ value: 1.0
219
+ name: Cosine Recall@5
220
+ - type: cosine_recall@10
221
+ value: 1.0
222
+ name: Cosine Recall@10
223
+ - type: cosine_ndcg@10
224
+ value: 1.0
225
+ name: Cosine Ndcg@10
226
+ - type: cosine_mrr@10
227
+ value: 1.0
228
+ name: Cosine Mrr@10
229
+ - type: cosine_map@100
230
+ value: 1.0
231
+ name: Cosine Map@100
232
+ - type: dot_accuracy@1
233
+ value: 1.0
234
+ name: Dot Accuracy@1
235
+ - type: dot_accuracy@3
236
+ value: 1.0
237
+ name: Dot Accuracy@3
238
+ - type: dot_accuracy@5
239
+ value: 1.0
240
+ name: Dot Accuracy@5
241
+ - type: dot_accuracy@10
242
+ value: 1.0
243
+ name: Dot Accuracy@10
244
+ - type: dot_precision@1
245
+ value: 1.0
246
+ name: Dot Precision@1
247
+ - type: dot_precision@3
248
+ value: 0.3333333333333333
249
+ name: Dot Precision@3
250
+ - type: dot_precision@5
251
+ value: 0.19999999999999998
252
+ name: Dot Precision@5
253
+ - type: dot_precision@10
254
+ value: 0.09999999999999999
255
+ name: Dot Precision@10
256
+ - type: dot_recall@1
257
+ value: 1.0
258
+ name: Dot Recall@1
259
+ - type: dot_recall@3
260
+ value: 1.0
261
+ name: Dot Recall@3
262
+ - type: dot_recall@5
263
+ value: 1.0
264
+ name: Dot Recall@5
265
+ - type: dot_recall@10
266
+ value: 1.0
267
+ name: Dot Recall@10
268
+ - type: dot_ndcg@10
269
+ value: 1.0
270
+ name: Dot Ndcg@10
271
+ - type: dot_mrr@10
272
+ value: 1.0
273
+ name: Dot Mrr@10
274
+ - type: dot_map@100
275
+ value: 1.0
276
+ name: Dot Map@100
277
+ ---
278
+
279
+ # SentenceTransformer based on srikarvar/fine_tuned_model_5
280
+
281
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
282
+
283
+ ## Model Details
284
+
285
+ ### Model Description
286
+ - **Model Type:** Sentence Transformer
287
+ - **Base model:** [srikarvar/fine_tuned_model_5](https://huggingface.co/srikarvar/fine_tuned_model_5) <!-- at revision 4e4dc22ad09f760a0a35c55d14d2f89ebe2d2ff2 -->
288
+ - **Maximum Sequence Length:** 512 tokens
289
+ - **Output Dimensionality:** 384 tokens
290
+ - **Similarity Function:** Cosine Similarity
291
+ - **Training Dataset:**
292
+ - json
293
+ <!-- - **Language:** Unknown -->
294
+ <!-- - **License:** Unknown -->
295
+
296
+ ### Model Sources
297
+
298
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
299
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
300
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
301
+
302
+ ### Full Model Architecture
303
+
304
+ ```
305
+ SentenceTransformer(
306
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
307
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
308
+ (2): Normalize()
309
+ )
310
+ ```
311
+
312
+ ## Usage
313
+
314
+ ### Direct Usage (Sentence Transformers)
315
+
316
+ First install the Sentence Transformers library:
317
+
318
+ ```bash
319
+ pip install -U sentence-transformers
320
+ ```
321
+
322
+ Then you can load this model and run inference.
323
+ ```python
324
+ from sentence_transformers import SentenceTransformer
325
+
326
+ # Download from the 🤗 Hub
327
+ model = SentenceTransformer("srikarvar/fine_tuned_model_13")
328
+ # Run inference
329
+ sentences = [
330
+ 'This framework has a strong connection with cloud platforms, making it simple to deploy and share models with the developer community.',
331
+ 'Yes, the framework is deeply integrated with cloud-based platforms, allowing for easy deployment and sharing with the developer community.',
332
+ 'UserRole data is properly converted to arrays.',
333
+ ]
334
+ embeddings = model.encode(sentences)
335
+ print(embeddings.shape)
336
+ # [3, 384]
337
+
338
+ # Get the similarity scores for the embeddings
339
+ similarities = model.similarity(embeddings, embeddings)
340
+ print(similarities.shape)
341
+ # [3, 3]
342
+ ```
343
+
344
+ <!--
345
+ ### Direct Usage (Transformers)
346
+
347
+ <details><summary>Click to see the direct usage in Transformers</summary>
348
+
349
+ </details>
350
+ -->
351
+
352
+ <!--
353
+ ### Downstream Usage (Sentence Transformers)
354
+
355
+ You can finetune this model on your own dataset.
356
+
357
+ <details><summary>Click to expand</summary>
358
+
359
+ </details>
360
+ -->
361
+
362
+ <!--
363
+ ### Out-of-Scope Use
364
+
365
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
366
+ -->
367
+
368
+ ## Evaluation
369
+
370
+ ### Metrics
371
+
372
+ #### Information Retrieval
373
+ * Dataset: `e5-cogcache-small-refined`
374
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
375
+
376
+ | Metric | Value |
377
+ |:--------------------|:--------|
378
+ | cosine_accuracy@1 | 1.0 |
379
+ | cosine_accuracy@3 | 1.0 |
380
+ | cosine_accuracy@5 | 1.0 |
381
+ | cosine_accuracy@10 | 1.0 |
382
+ | cosine_precision@1 | 1.0 |
383
+ | cosine_precision@3 | 0.3333 |
384
+ | cosine_precision@5 | 0.2 |
385
+ | cosine_precision@10 | 0.1 |
386
+ | cosine_recall@1 | 1.0 |
387
+ | cosine_recall@3 | 1.0 |
388
+ | cosine_recall@5 | 1.0 |
389
+ | cosine_recall@10 | 1.0 |
390
+ | cosine_ndcg@10 | 1.0 |
391
+ | cosine_mrr@10 | 1.0 |
392
+ | **cosine_map@100** | **1.0** |
393
+ | dot_accuracy@1 | 1.0 |
394
+ | dot_accuracy@3 | 1.0 |
395
+ | dot_accuracy@5 | 1.0 |
396
+ | dot_accuracy@10 | 1.0 |
397
+ | dot_precision@1 | 1.0 |
398
+ | dot_precision@3 | 0.3333 |
399
+ | dot_precision@5 | 0.2 |
400
+ | dot_precision@10 | 0.1 |
401
+ | dot_recall@1 | 1.0 |
402
+ | dot_recall@3 | 1.0 |
403
+ | dot_recall@5 | 1.0 |
404
+ | dot_recall@10 | 1.0 |
405
+ | dot_ndcg@10 | 1.0 |
406
+ | dot_mrr@10 | 1.0 |
407
+ | dot_map@100 | 1.0 |
408
+
409
+ #### Information Retrieval
410
+ * Dataset: `e5-cogcache-small-refined`
411
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
412
+
413
+ | Metric | Value |
414
+ |:--------------------|:--------|
415
+ | cosine_accuracy@1 | 1.0 |
416
+ | cosine_accuracy@3 | 1.0 |
417
+ | cosine_accuracy@5 | 1.0 |
418
+ | cosine_accuracy@10 | 1.0 |
419
+ | cosine_precision@1 | 1.0 |
420
+ | cosine_precision@3 | 0.3333 |
421
+ | cosine_precision@5 | 0.2 |
422
+ | cosine_precision@10 | 0.1 |
423
+ | cosine_recall@1 | 1.0 |
424
+ | cosine_recall@3 | 1.0 |
425
+ | cosine_recall@5 | 1.0 |
426
+ | cosine_recall@10 | 1.0 |
427
+ | cosine_ndcg@10 | 1.0 |
428
+ | cosine_mrr@10 | 1.0 |
429
+ | **cosine_map@100** | **1.0** |
430
+ | dot_accuracy@1 | 1.0 |
431
+ | dot_accuracy@3 | 1.0 |
432
+ | dot_accuracy@5 | 1.0 |
433
+ | dot_accuracy@10 | 1.0 |
434
+ | dot_precision@1 | 1.0 |
435
+ | dot_precision@3 | 0.3333 |
436
+ | dot_precision@5 | 0.2 |
437
+ | dot_precision@10 | 0.1 |
438
+ | dot_recall@1 | 1.0 |
439
+ | dot_recall@3 | 1.0 |
440
+ | dot_recall@5 | 1.0 |
441
+ | dot_recall@10 | 1.0 |
442
+ | dot_ndcg@10 | 1.0 |
443
+ | dot_mrr@10 | 1.0 |
444
+ | dot_map@100 | 1.0 |
445
+
446
+ <!--
447
+ ## Bias, Risks and Limitations
448
+
449
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
450
+ -->
451
+
452
+ <!--
453
+ ### Recommendations
454
+
455
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
456
+ -->
457
+
458
+ ## Training Details
459
+
460
+ ### Training Dataset
461
+
462
+ #### json
463
+
464
+ * Dataset: json
465
+ * Size: 560 training samples
466
+ * Columns: <code>anchor</code> and <code>positive</code>
467
+ * Approximate statistics based on the first 560 samples:
468
+ | | anchor | positive |
469
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
470
+ | type | string | string |
471
+ | details | <ul><li>min: 9 tokens</li><li>mean: 30.18 tokens</li><li>max: 98 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 30.0 tokens</li><li>max: 98 tokens</li></ul> |
472
+ * Samples:
473
+ | anchor | positive |
474
+ |:---------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
475
+ | <code>It is not available in v2.10.0.</code> | <code>No, it doesn't exist in v2.10.0.</code> |
476
+ | <code>You can become a member of the research forum and pose questions to the AI community.</code> | <code>You can join and ask questions in the AI research forum.</code> |
477
+ | <code>No information regarding initializing a project for PyTorch is included in the guide.</code> | <code>The guide does not provide information on how to initialize a project for PyTorch.</code> |
478
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
479
+ ```json
480
+ {
481
+ "scale": 20.0,
482
+ "similarity_fct": "cos_sim"
483
+ }
484
+ ```
485
+
486
+ ### Training Hyperparameters
487
+ #### Non-Default Hyperparameters
488
+
489
+ - `eval_strategy`: epoch
490
+ - `per_device_train_batch_size`: 16
491
+ - `per_device_eval_batch_size`: 16
492
+ - `warmup_ratio`: 0.1
493
+ - `batch_sampler`: no_duplicates
494
+
495
+ #### All Hyperparameters
496
+ <details><summary>Click to expand</summary>
497
+
498
+ - `overwrite_output_dir`: False
499
+ - `do_predict`: False
500
+ - `eval_strategy`: epoch
501
+ - `prediction_loss_only`: True
502
+ - `per_device_train_batch_size`: 16
503
+ - `per_device_eval_batch_size`: 16
504
+ - `per_gpu_train_batch_size`: None
505
+ - `per_gpu_eval_batch_size`: None
506
+ - `gradient_accumulation_steps`: 1
507
+ - `eval_accumulation_steps`: None
508
+ - `learning_rate`: 5e-05
509
+ - `weight_decay`: 0.0
510
+ - `adam_beta1`: 0.9
511
+ - `adam_beta2`: 0.999
512
+ - `adam_epsilon`: 1e-08
513
+ - `max_grad_norm`: 1.0
514
+ - `num_train_epochs`: 3
515
+ - `max_steps`: -1
516
+ - `lr_scheduler_type`: linear
517
+ - `lr_scheduler_kwargs`: {}
518
+ - `warmup_ratio`: 0.1
519
+ - `warmup_steps`: 0
520
+ - `log_level`: passive
521
+ - `log_level_replica`: warning
522
+ - `log_on_each_node`: True
523
+ - `logging_nan_inf_filter`: True
524
+ - `save_safetensors`: True
525
+ - `save_on_each_node`: False
526
+ - `save_only_model`: False
527
+ - `restore_callback_states_from_checkpoint`: False
528
+ - `no_cuda`: False
529
+ - `use_cpu`: False
530
+ - `use_mps_device`: False
531
+ - `seed`: 42
532
+ - `data_seed`: None
533
+ - `jit_mode_eval`: False
534
+ - `use_ipex`: False
535
+ - `bf16`: False
536
+ - `fp16`: False
537
+ - `fp16_opt_level`: O1
538
+ - `half_precision_backend`: auto
539
+ - `bf16_full_eval`: False
540
+ - `fp16_full_eval`: False
541
+ - `tf32`: None
542
+ - `local_rank`: 0
543
+ - `ddp_backend`: None
544
+ - `tpu_num_cores`: None
545
+ - `tpu_metrics_debug`: False
546
+ - `debug`: []
547
+ - `dataloader_drop_last`: False
548
+ - `dataloader_num_workers`: 0
549
+ - `dataloader_prefetch_factor`: None
550
+ - `past_index`: -1
551
+ - `disable_tqdm`: False
552
+ - `remove_unused_columns`: True
553
+ - `label_names`: None
554
+ - `load_best_model_at_end`: False
555
+ - `ignore_data_skip`: False
556
+ - `fsdp`: []
557
+ - `fsdp_min_num_params`: 0
558
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
559
+ - `fsdp_transformer_layer_cls_to_wrap`: None
560
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
561
+ - `deepspeed`: None
562
+ - `label_smoothing_factor`: 0.0
563
+ - `optim`: adamw_torch
564
+ - `optim_args`: None
565
+ - `adafactor`: False
566
+ - `group_by_length`: False
567
+ - `length_column_name`: length
568
+ - `ddp_find_unused_parameters`: None
569
+ - `ddp_bucket_cap_mb`: None
570
+ - `ddp_broadcast_buffers`: False
571
+ - `dataloader_pin_memory`: True
572
+ - `dataloader_persistent_workers`: False
573
+ - `skip_memory_metrics`: True
574
+ - `use_legacy_prediction_loop`: False
575
+ - `push_to_hub`: False
576
+ - `resume_from_checkpoint`: None
577
+ - `hub_model_id`: None
578
+ - `hub_strategy`: every_save
579
+ - `hub_private_repo`: False
580
+ - `hub_always_push`: False
581
+ - `gradient_checkpointing`: False
582
+ - `gradient_checkpointing_kwargs`: None
583
+ - `include_inputs_for_metrics`: False
584
+ - `eval_do_concat_batches`: True
585
+ - `fp16_backend`: auto
586
+ - `push_to_hub_model_id`: None
587
+ - `push_to_hub_organization`: None
588
+ - `mp_parameters`:
589
+ - `auto_find_batch_size`: False
590
+ - `full_determinism`: False
591
+ - `torchdynamo`: None
592
+ - `ray_scope`: last
593
+ - `ddp_timeout`: 1800
594
+ - `torch_compile`: False
595
+ - `torch_compile_backend`: None
596
+ - `torch_compile_mode`: None
597
+ - `dispatch_batches`: None
598
+ - `split_batches`: None
599
+ - `include_tokens_per_second`: False
600
+ - `include_num_input_tokens_seen`: False
601
+ - `neftune_noise_alpha`: None
602
+ - `optim_target_modules`: None
603
+ - `batch_eval_metrics`: False
604
+ - `batch_sampler`: no_duplicates
605
+ - `multi_dataset_batch_sampler`: proportional
606
+
607
+ </details>
608
+
609
+ ### Training Logs
610
+ | Epoch | Step | Training Loss | e5-cogcache-small-refined_cosine_map@100 |
611
+ |:------:|:----:|:-------------:|:----------------------------------------:|
612
+ | 0 | 0 | - | 0.9911 |
613
+ | 0.3125 | 10 | 0.0088 | - |
614
+ | 0.625 | 20 | 0.001 | - |
615
+ | 0.9375 | 30 | 0.0064 | - |
616
+ | 1.0 | 32 | - | 1.0 |
617
+ | 1.25 | 40 | 0.0 | - |
618
+ | 1.5625 | 50 | 0.0001 | - |
619
+ | 1.875 | 60 | 0.0002 | - |
620
+ | 2.0 | 64 | - | 1.0 |
621
+ | 2.1875 | 70 | 0.0003 | - |
622
+ | 2.5 | 80 | 0.0001 | - |
623
+ | 2.8125 | 90 | 0.0002 | - |
624
+ | 3.0 | 96 | - | 1.0 |
625
+
626
+
627
+ ### Framework Versions
628
+ - Python: 3.10.12
629
+ - Sentence Transformers: 3.1.0
630
+ - Transformers: 4.41.2
631
+ - PyTorch: 2.1.2+cu121
632
+ - Accelerate: 0.34.2
633
+ - Datasets: 2.19.1
634
+ - Tokenizers: 0.19.1
635
+
636
+ ## Citation
637
+
638
+ ### BibTeX
639
+
640
+ #### Sentence Transformers
641
+ ```bibtex
642
+ @inproceedings{reimers-2019-sentence-bert,
643
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
644
+ author = "Reimers, Nils and Gurevych, Iryna",
645
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
646
+ month = "11",
647
+ year = "2019",
648
+ publisher = "Association for Computational Linguistics",
649
+ url = "https://arxiv.org/abs/1908.10084",
650
+ }
651
+ ```
652
+
653
+ #### MultipleNegativesRankingLoss
654
+ ```bibtex
655
+ @misc{henderson2017efficient,
656
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
657
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
658
+ year={2017},
659
+ eprint={1705.00652},
660
+ archivePrefix={arXiv},
661
+ primaryClass={cs.CL}
662
+ }
663
+ ```
664
+
665
+ <!--
666
+ ## Glossary
667
+
668
+ *Clearly define terms in order to be accessible across audiences.*
669
+ -->
670
+
671
+ <!--
672
+ ## Model Card Authors
673
+
674
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
675
+ -->
676
+
677
+ <!--
678
+ ## Model Card Contact
679
+
680
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
681
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "srikarvar/fine_tuned_model_5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7923d2a5cdf80ae090938446b218494fb06eccd5fb090518a5bc7858ab857aa
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }