---
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2836
- loss:OnlineContrastiveLoss
widget:
- source_sentence: No, it doesn't exist in version 5.3.1.
sentences:
- 'The `from_dictionary` function requires the following:
- `data` (Union[dict, Mapping]): A collection of keys linked to values or Python
objects.
- `schema` (Schema, optional): If not given, it will be determined from the Mapping
values.
- `metadata` (Union[dict, Mapping], optional): Optional metadata for the schema
(if inferred).'
- Stages of photosynthesis
- Version 5.3.1 does not contain it.
- source_sentence: How to make homemade ice cream?
sentences:
- Recipe for making ice cream at home
- How will abolishing Rs. 500 and Rs. 1000 notes affect the real estate businesses
in India?
- How many people live in Japan?
- source_sentence: Best books on World War II
sentences:
- How do I go about getting a visa?
- What steps are involved in performing market analysis?
- Top literature about World War II
- source_sentence: What is the benefit of going Walking every morning?
sentences:
- What are the top workouts for losing weight?
- How large is Japan?
- Bollywood industry doesn't encourage outsiders? For ex outsiders may get one or
at max two chances whereas star kids get multiple chances to perform?
- source_sentence: The purpose of the training guide is to provide tutorials, how-to
guides, and conceptual guides for working with AI models.
sentences:
- Steps to roast a turkey
- The goal of the training guide is to offer tutorials, how-to instructions, and
conceptual guidance for utilizing AI models.
- Who was the first person to fly across the Atlantic?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8639240506329114
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8522839546203613
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8853333333333334
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8417313098907471
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9021739130434783
name: Cosine Precision
- type: cosine_recall
value: 0.8691099476439791
name: Cosine Recall
- type: cosine_ap
value: 0.9514746651949948
name: Cosine Ap
- type: dot_accuracy
value: 0.8639240506329114
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8522839546203613
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8853333333333334
name: Dot F1
- type: dot_f1_threshold
value: 0.8417313098907471
name: Dot F1 Threshold
- type: dot_precision
value: 0.9021739130434783
name: Dot Precision
- type: dot_recall
value: 0.8691099476439791
name: Dot Recall
- type: dot_ap
value: 0.9514746651949948
name: Dot Ap
- type: manhattan_accuracy
value: 0.8670886075949367
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.227925300598145
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8877005347593583
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.646421432495117
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.907103825136612
name: Manhattan Precision
- type: manhattan_recall
value: 0.8691099476439791
name: Manhattan Recall
- type: manhattan_ap
value: 0.9520439027006086
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8639240506329114
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5435356497764587
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8853333333333334
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5626147985458374
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9021739130434783
name: Euclidean Precision
- type: euclidean_recall
value: 0.8691099476439791
name: Euclidean Recall
- type: euclidean_ap
value: 0.9514724841898053
name: Euclidean Ap
- type: max_accuracy
value: 0.8670886075949367
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.227925300598145
name: Max Accuracy Threshold
- type: max_f1
value: 0.8877005347593583
name: Max F1
- type: max_f1_threshold
value: 8.646421432495117
name: Max F1 Threshold
- type: max_precision
value: 0.907103825136612
name: Max Precision
- type: max_recall
value: 0.8691099476439791
name: Max Recall
- type: max_ap
value: 0.9520439027006086
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.870253164556962
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8251076936721802
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8935064935064936
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8084052801132202
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8865979381443299
name: Cosine Precision
- type: cosine_recall
value: 0.900523560209424
name: Cosine Recall
- type: cosine_ap
value: 0.9546600352559002
name: Cosine Ap
- type: dot_accuracy
value: 0.870253164556962
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8251076936721802
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8935064935064936
name: Dot F1
- type: dot_f1_threshold
value: 0.808405339717865
name: Dot F1 Threshold
- type: dot_precision
value: 0.8865979381443299
name: Dot Precision
- type: dot_recall
value: 0.900523560209424
name: Dot Recall
- type: dot_ap
value: 0.9546600352559002
name: Dot Ap
- type: manhattan_accuracy
value: 0.870253164556962
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.181171417236328
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8912466843501327
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.181171417236328
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9032258064516129
name: Manhattan Precision
- type: manhattan_recall
value: 0.8795811518324608
name: Manhattan Recall
- type: manhattan_ap
value: 0.9546014712222561
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.870253164556962
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.591425895690918
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8935064935064936
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6190224885940552
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8865979381443299
name: Euclidean Precision
- type: euclidean_recall
value: 0.900523560209424
name: Euclidean Recall
- type: euclidean_ap
value: 0.9546600352559002
name: Euclidean Ap
- type: max_accuracy
value: 0.870253164556962
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.181171417236328
name: Max Accuracy Threshold
- type: max_f1
value: 0.8935064935064936
name: Max F1
- type: max_f1_threshold
value: 9.181171417236328
name: Max F1 Threshold
- type: max_precision
value: 0.9032258064516129
name: Max Precision
- type: max_recall
value: 0.900523560209424
name: Max Recall
- type: max_ap
value: 0.9546600352559002
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_14")
# Run inference
sentences = [
'The purpose of the training guide is to provide tutorials, how-to guides, and conceptual guides for working with AI models.',
'The goal of the training guide is to offer tutorials, how-to instructions, and conceptual guidance for utilizing AI models.',
'Steps to roast a turkey',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:----------|
| cosine_accuracy | 0.8639 |
| cosine_accuracy_threshold | 0.8523 |
| cosine_f1 | 0.8853 |
| cosine_f1_threshold | 0.8417 |
| cosine_precision | 0.9022 |
| cosine_recall | 0.8691 |
| cosine_ap | 0.9515 |
| dot_accuracy | 0.8639 |
| dot_accuracy_threshold | 0.8523 |
| dot_f1 | 0.8853 |
| dot_f1_threshold | 0.8417 |
| dot_precision | 0.9022 |
| dot_recall | 0.8691 |
| dot_ap | 0.9515 |
| manhattan_accuracy | 0.8671 |
| manhattan_accuracy_threshold | 8.2279 |
| manhattan_f1 | 0.8877 |
| manhattan_f1_threshold | 8.6464 |
| manhattan_precision | 0.9071 |
| manhattan_recall | 0.8691 |
| manhattan_ap | 0.952 |
| euclidean_accuracy | 0.8639 |
| euclidean_accuracy_threshold | 0.5435 |
| euclidean_f1 | 0.8853 |
| euclidean_f1_threshold | 0.5626 |
| euclidean_precision | 0.9022 |
| euclidean_recall | 0.8691 |
| euclidean_ap | 0.9515 |
| max_accuracy | 0.8671 |
| max_accuracy_threshold | 8.2279 |
| max_f1 | 0.8877 |
| max_f1_threshold | 8.6464 |
| max_precision | 0.9071 |
| max_recall | 0.8691 |
| **max_ap** | **0.952** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8703 |
| cosine_accuracy_threshold | 0.8251 |
| cosine_f1 | 0.8935 |
| cosine_f1_threshold | 0.8084 |
| cosine_precision | 0.8866 |
| cosine_recall | 0.9005 |
| cosine_ap | 0.9547 |
| dot_accuracy | 0.8703 |
| dot_accuracy_threshold | 0.8251 |
| dot_f1 | 0.8935 |
| dot_f1_threshold | 0.8084 |
| dot_precision | 0.8866 |
| dot_recall | 0.9005 |
| dot_ap | 0.9547 |
| manhattan_accuracy | 0.8703 |
| manhattan_accuracy_threshold | 9.1812 |
| manhattan_f1 | 0.8912 |
| manhattan_f1_threshold | 9.1812 |
| manhattan_precision | 0.9032 |
| manhattan_recall | 0.8796 |
| manhattan_ap | 0.9546 |
| euclidean_accuracy | 0.8703 |
| euclidean_accuracy_threshold | 0.5914 |
| euclidean_f1 | 0.8935 |
| euclidean_f1_threshold | 0.619 |
| euclidean_precision | 0.8866 |
| euclidean_recall | 0.9005 |
| euclidean_ap | 0.9547 |
| max_accuracy | 0.8703 |
| max_accuracy_threshold | 9.1812 |
| max_f1 | 0.8935 |
| max_f1_threshold | 9.1812 |
| max_precision | 0.9032 |
| max_recall | 0.9005 |
| **max_ap** | **0.9547** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,836 training samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | label | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | int | string |
| details |
What are the symptoms of diabetes?
| 1
| What are the indicators of diabetes?
|
| What is the speed of light?
| 1
| At what speed does light travel?
|
| Eager inventory processing loads the entire inventory list immediately and returns it, while lazy inventory processing applies the processing steps on-the-fly when browsing through the list.
| 1
| Inventory processing that is done eagerly loads the entire inventory right away and provides the result, whereas lazy inventory processing performs the operations as it goes through the list.
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 316 evaluation samples
* Columns: sentence1
, label
, and sentence2
* Approximate statistics based on the first 316 samples:
| | sentence1 | label | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | int | string |
| details | How many planets are in the solar system?
| 1
| Number of planets in the solar system
|
| What are the symptoms of pneumonia?
| 0
| What are the symptoms of bronchitis?
|
| What is the boiling point of sulfur?
| 0
| What is the melting point of sulfur?
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 6
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters