---
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2332
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Who discovered the structure of DNA?
sentences:
- Who discovered the structure of RNA?
- Steps to apply for a scholarship
- First human to set foot on the moon
- source_sentence: Who directed 'Schindler's List'?
sentences:
- Who directed 'The Pianist'?
- What are some high paying jobs for a fresher with an M.Tech in biotechnology?
- Where can I find gluten-free restaurants?
- source_sentence: Which is the best shares to purchase and sale daily trading?
sentences:
- In Sydney, which company would be the best to get advice for Business Sales &
Purchases?
- Steps to adjust phone settings
- Is a 3.8 GPA sufficient to get into a top school?
- source_sentence: Nd she is always sad?
sentences:
- Where to purchase organic produce
- Aerodynamically what happens when propellor rotates?
- How is unsupervised learning used for data insights?
- source_sentence: How to bake a pie?
sentences:
- What is the population of Chicago?
- Steps to bake a pie
- 'What is the distribution of traffic between Google organic search results? e.g.
#1 vs. #2 in rankings, first page vs. second page'
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8653846153846154
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.872760534286499
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8656716417910447
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8200240135192871
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8285714285714286
name: Cosine Precision
- type: cosine_recall
value: 0.90625
name: Cosine Recall
- type: cosine_ap
value: 0.9322624848213654
name: Cosine Ap
- type: dot_accuracy
value: 0.8653846153846154
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.872760534286499
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8656716417910447
name: Dot F1
- type: dot_f1_threshold
value: 0.8200240135192871
name: Dot F1 Threshold
- type: dot_precision
value: 0.8285714285714286
name: Dot Precision
- type: dot_recall
value: 0.90625
name: Dot Recall
- type: dot_ap
value: 0.9322624848213654
name: Dot Ap
- type: manhattan_accuracy
value: 0.8692307692307693
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.252302169799805
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8721804511278196
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.252302169799805
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8405797101449275
name: Manhattan Precision
- type: manhattan_recall
value: 0.90625
name: Manhattan Recall
- type: manhattan_ap
value: 0.9322911488571455
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8653846153846154
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5044240355491638
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8656716417910447
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5999571084976196
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8285714285714286
name: Euclidean Precision
- type: euclidean_recall
value: 0.90625
name: Euclidean Recall
- type: euclidean_ap
value: 0.9322624848213654
name: Euclidean Ap
- type: max_accuracy
value: 0.8692307692307693
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.252302169799805
name: Max Accuracy Threshold
- type: max_f1
value: 0.8721804511278196
name: Max F1
- type: max_f1_threshold
value: 9.252302169799805
name: Max F1 Threshold
- type: max_precision
value: 0.8405797101449275
name: Max Precision
- type: max_recall
value: 0.90625
name: Max Recall
- type: max_ap
value: 0.9322911488571455
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.916
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.844039261341095
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.907488986784141
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8230063319206238
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8728813559322034
name: Cosine Precision
- type: cosine_recall
value: 0.944954128440367
name: Cosine Recall
- type: cosine_ap
value: 0.96095333014952
name: Cosine Ap
- type: dot_accuracy
value: 0.916
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8440393209457397
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.907488986784141
name: Dot F1
- type: dot_f1_threshold
value: 0.8230063319206238
name: Dot F1 Threshold
- type: dot_precision
value: 0.8728813559322034
name: Dot Precision
- type: dot_recall
value: 0.944954128440367
name: Dot Recall
- type: dot_ap
value: 0.96095333014952
name: Dot Ap
- type: manhattan_accuracy
value: 0.916
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.581160545349121
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.907488986784141
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.327116012573242
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8728813559322034
name: Manhattan Precision
- type: manhattan_recall
value: 0.944954128440367
name: Manhattan Recall
- type: manhattan_ap
value: 0.9612698712458685
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.916
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5584936141967773
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.907488986784141
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.594968318939209
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8728813559322034
name: Euclidean Precision
- type: euclidean_recall
value: 0.944954128440367
name: Euclidean Recall
- type: euclidean_ap
value: 0.96095333014952
name: Euclidean Ap
- type: max_accuracy
value: 0.916
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.581160545349121
name: Max Accuracy Threshold
- type: max_f1
value: 0.907488986784141
name: Max F1
- type: max_f1_threshold
value: 9.327116012573242
name: Max F1 Threshold
- type: max_precision
value: 0.8728813559322034
name: Max Precision
- type: max_recall
value: 0.944954128440367
name: Max Recall
- type: max_ap
value: 0.9612698712458685
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_5")
# Run inference
sentences = [
'How to bake a pie?',
'Steps to bake a pie',
'What is the population of Chicago?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.8654 |
| cosine_accuracy_threshold | 0.8728 |
| cosine_f1 | 0.8657 |
| cosine_f1_threshold | 0.82 |
| cosine_precision | 0.8286 |
| cosine_recall | 0.9062 |
| cosine_ap | 0.9323 |
| dot_accuracy | 0.8654 |
| dot_accuracy_threshold | 0.8728 |
| dot_f1 | 0.8657 |
| dot_f1_threshold | 0.82 |
| dot_precision | 0.8286 |
| dot_recall | 0.9062 |
| dot_ap | 0.9323 |
| manhattan_accuracy | 0.8692 |
| manhattan_accuracy_threshold | 9.2523 |
| manhattan_f1 | 0.8722 |
| manhattan_f1_threshold | 9.2523 |
| manhattan_precision | 0.8406 |
| manhattan_recall | 0.9062 |
| manhattan_ap | 0.9323 |
| euclidean_accuracy | 0.8654 |
| euclidean_accuracy_threshold | 0.5044 |
| euclidean_f1 | 0.8657 |
| euclidean_f1_threshold | 0.6 |
| euclidean_precision | 0.8286 |
| euclidean_recall | 0.9062 |
| euclidean_ap | 0.9323 |
| max_accuracy | 0.8692 |
| max_accuracy_threshold | 9.2523 |
| max_f1 | 0.8722 |
| max_f1_threshold | 9.2523 |
| max_precision | 0.8406 |
| max_recall | 0.9062 |
| **max_ap** | **0.9323** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.916 |
| cosine_accuracy_threshold | 0.844 |
| cosine_f1 | 0.9075 |
| cosine_f1_threshold | 0.823 |
| cosine_precision | 0.8729 |
| cosine_recall | 0.945 |
| cosine_ap | 0.961 |
| dot_accuracy | 0.916 |
| dot_accuracy_threshold | 0.844 |
| dot_f1 | 0.9075 |
| dot_f1_threshold | 0.823 |
| dot_precision | 0.8729 |
| dot_recall | 0.945 |
| dot_ap | 0.961 |
| manhattan_accuracy | 0.916 |
| manhattan_accuracy_threshold | 8.5812 |
| manhattan_f1 | 0.9075 |
| manhattan_f1_threshold | 9.3271 |
| manhattan_precision | 0.8729 |
| manhattan_recall | 0.945 |
| manhattan_ap | 0.9613 |
| euclidean_accuracy | 0.916 |
| euclidean_accuracy_threshold | 0.5585 |
| euclidean_f1 | 0.9075 |
| euclidean_f1_threshold | 0.595 |
| euclidean_precision | 0.8729 |
| euclidean_recall | 0.945 |
| euclidean_ap | 0.961 |
| max_accuracy | 0.916 |
| max_accuracy_threshold | 8.5812 |
| max_f1 | 0.9075 |
| max_f1_threshold | 9.3271 |
| max_precision | 0.8729 |
| max_recall | 0.945 |
| **max_ap** | **0.9613** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,332 training samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
How to bake a chocolate cake?
| Recipe for baking a chocolate cake
| 1
|
| Why do girls want to be friends with the guy they reject?
| How do guys feel after rejecting a girl?
| 0
|
| How can I stop being afraid of working?
| How do you stop being afraid of everything?
| 0
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 260 evaluation samples
* Columns: sentence1
, sentence2
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | How to cook spaghetti?
| Steps to cook spaghetti
| 1
|
| How to create a mobile app?
| How to create a desktop application?
| 0
|
| How can I update my resume?
| Steps to revise and update a resume
| 1
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters