srikarvar commited on
Commit
6efa041
1 Parent(s): 92c9df4

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,880 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - cosine_accuracy_threshold
9
+ - cosine_f1
10
+ - cosine_f1_threshold
11
+ - cosine_precision
12
+ - cosine_recall
13
+ - cosine_ap
14
+ - dot_accuracy
15
+ - dot_accuracy_threshold
16
+ - dot_f1
17
+ - dot_f1_threshold
18
+ - dot_precision
19
+ - dot_recall
20
+ - dot_ap
21
+ - manhattan_accuracy
22
+ - manhattan_accuracy_threshold
23
+ - manhattan_f1
24
+ - manhattan_f1_threshold
25
+ - manhattan_precision
26
+ - manhattan_recall
27
+ - manhattan_ap
28
+ - euclidean_accuracy
29
+ - euclidean_accuracy_threshold
30
+ - euclidean_f1
31
+ - euclidean_f1_threshold
32
+ - euclidean_precision
33
+ - euclidean_recall
34
+ - euclidean_ap
35
+ - max_accuracy
36
+ - max_accuracy_threshold
37
+ - max_f1
38
+ - max_f1_threshold
39
+ - max_precision
40
+ - max_recall
41
+ - max_ap
42
+ pipeline_tag: sentence-similarity
43
+ tags:
44
+ - sentence-transformers
45
+ - sentence-similarity
46
+ - feature-extraction
47
+ - generated_from_trainer
48
+ - dataset_size:971
49
+ - loss:OnlineContrastiveLoss
50
+ widget:
51
+ - source_sentence: Steps to bake a pie
52
+ sentences:
53
+ - How to bake a pie?
54
+ - What are the ingredients of a pizza?
55
+ - How to create a business plan?
56
+ - source_sentence: What are the benefits of yoga?
57
+ sentences:
58
+ - If I combine the yellow and blue colors, what color will I get?
59
+ - Can you help me understand this contract?
60
+ - What are the benefits of meditation?
61
+ - source_sentence: Capital city of Canada
62
+ sentences:
63
+ - What time does the movie start?
64
+ - Who is the President of the United States?
65
+ - What is the capital of Canada?
66
+ - source_sentence: Tell me about Shopify
67
+ sentences:
68
+ - Who discovered penicillin?
69
+ - Share info about Shopify
70
+ - Who invented the telephone?
71
+ - source_sentence: What is the melting point of ice at sea level?
72
+ sentences:
73
+ - What is the boiling point of water at sea level?
74
+ - Can you recommend a good restaurant nearby?
75
+ - Tell me a joke
76
+ model-index:
77
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
78
+ results:
79
+ - task:
80
+ type: binary-classification
81
+ name: Binary Classification
82
+ dataset:
83
+ name: pair class dev
84
+ type: pair-class-dev
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.6337448559670782
88
+ name: Cosine Accuracy
89
+ - type: cosine_accuracy_threshold
90
+ value: 0.9370981454849243
91
+ name: Cosine Accuracy Threshold
92
+ - type: cosine_f1
93
+ value: 0.6735395189003436
94
+ name: Cosine F1
95
+ - type: cosine_f1_threshold
96
+ value: 0.9088578224182129
97
+ name: Cosine F1 Threshold
98
+ - type: cosine_precision
99
+ value: 0.5355191256830601
100
+ name: Cosine Precision
101
+ - type: cosine_recall
102
+ value: 0.9074074074074074
103
+ name: Cosine Recall
104
+ - type: cosine_ap
105
+ value: 0.6318945658459245
106
+ name: Cosine Ap
107
+ - type: dot_accuracy
108
+ value: 0.6337448559670782
109
+ name: Dot Accuracy
110
+ - type: dot_accuracy_threshold
111
+ value: 0.9370982050895691
112
+ name: Dot Accuracy Threshold
113
+ - type: dot_f1
114
+ value: 0.6735395189003436
115
+ name: Dot F1
116
+ - type: dot_f1_threshold
117
+ value: 0.9088578224182129
118
+ name: Dot F1 Threshold
119
+ - type: dot_precision
120
+ value: 0.5355191256830601
121
+ name: Dot Precision
122
+ - type: dot_recall
123
+ value: 0.9074074074074074
124
+ name: Dot Recall
125
+ - type: dot_ap
126
+ value: 0.6318945658459245
127
+ name: Dot Ap
128
+ - type: manhattan_accuracy
129
+ value: 0.6378600823045267
130
+ name: Manhattan Accuracy
131
+ - type: manhattan_accuracy_threshold
132
+ value: 5.581961631774902
133
+ name: Manhattan Accuracy Threshold
134
+ - type: manhattan_f1
135
+ value: 0.6712802768166088
136
+ name: Manhattan F1
137
+ - type: manhattan_f1_threshold
138
+ value: 6.53279972076416
139
+ name: Manhattan F1 Threshold
140
+ - type: manhattan_precision
141
+ value: 0.5359116022099447
142
+ name: Manhattan Precision
143
+ - type: manhattan_recall
144
+ value: 0.8981481481481481
145
+ name: Manhattan Recall
146
+ - type: manhattan_ap
147
+ value: 0.642597262545426
148
+ name: Manhattan Ap
149
+ - type: euclidean_accuracy
150
+ value: 0.6337448559670782
151
+ name: Euclidean Accuracy
152
+ - type: euclidean_accuracy_threshold
153
+ value: 0.3546881079673767
154
+ name: Euclidean Accuracy Threshold
155
+ - type: euclidean_f1
156
+ value: 0.6735395189003436
157
+ name: Euclidean F1
158
+ - type: euclidean_f1_threshold
159
+ value: 0.42694616317749023
160
+ name: Euclidean F1 Threshold
161
+ - type: euclidean_precision
162
+ value: 0.5355191256830601
163
+ name: Euclidean Precision
164
+ - type: euclidean_recall
165
+ value: 0.9074074074074074
166
+ name: Euclidean Recall
167
+ - type: euclidean_ap
168
+ value: 0.6318945658459245
169
+ name: Euclidean Ap
170
+ - type: max_accuracy
171
+ value: 0.6378600823045267
172
+ name: Max Accuracy
173
+ - type: max_accuracy_threshold
174
+ value: 5.581961631774902
175
+ name: Max Accuracy Threshold
176
+ - type: max_f1
177
+ value: 0.6735395189003436
178
+ name: Max F1
179
+ - type: max_f1_threshold
180
+ value: 6.53279972076416
181
+ name: Max F1 Threshold
182
+ - type: max_precision
183
+ value: 0.5359116022099447
184
+ name: Max Precision
185
+ - type: max_recall
186
+ value: 0.9074074074074074
187
+ name: Max Recall
188
+ - type: max_ap
189
+ value: 0.642597262545426
190
+ name: Max Ap
191
+ - type: cosine_accuracy
192
+ value: 0.9423868312757202
193
+ name: Cosine Accuracy
194
+ - type: cosine_accuracy_threshold
195
+ value: 0.7851011753082275
196
+ name: Cosine Accuracy Threshold
197
+ - type: cosine_f1
198
+ value: 0.9363636363636363
199
+ name: Cosine F1
200
+ - type: cosine_f1_threshold
201
+ value: 0.7851011753082275
202
+ name: Cosine F1 Threshold
203
+ - type: cosine_precision
204
+ value: 0.9196428571428571
205
+ name: Cosine Precision
206
+ - type: cosine_recall
207
+ value: 0.9537037037037037
208
+ name: Cosine Recall
209
+ - type: cosine_ap
210
+ value: 0.9629460493565268
211
+ name: Cosine Ap
212
+ - type: dot_accuracy
213
+ value: 0.9423868312757202
214
+ name: Dot Accuracy
215
+ - type: dot_accuracy_threshold
216
+ value: 0.7851011753082275
217
+ name: Dot Accuracy Threshold
218
+ - type: dot_f1
219
+ value: 0.9363636363636363
220
+ name: Dot F1
221
+ - type: dot_f1_threshold
222
+ value: 0.7851011753082275
223
+ name: Dot F1 Threshold
224
+ - type: dot_precision
225
+ value: 0.9196428571428571
226
+ name: Dot Precision
227
+ - type: dot_recall
228
+ value: 0.9537037037037037
229
+ name: Dot Recall
230
+ - type: dot_ap
231
+ value: 0.9629460493565268
232
+ name: Dot Ap
233
+ - type: manhattan_accuracy
234
+ value: 0.9382716049382716
235
+ name: Manhattan Accuracy
236
+ - type: manhattan_accuracy_threshold
237
+ value: 10.554386138916016
238
+ name: Manhattan Accuracy Threshold
239
+ - type: manhattan_f1
240
+ value: 0.9333333333333333
241
+ name: Manhattan F1
242
+ - type: manhattan_f1_threshold
243
+ value: 10.554386138916016
244
+ name: Manhattan F1 Threshold
245
+ - type: manhattan_precision
246
+ value: 0.8974358974358975
247
+ name: Manhattan Precision
248
+ - type: manhattan_recall
249
+ value: 0.9722222222222222
250
+ name: Manhattan Recall
251
+ - type: manhattan_ap
252
+ value: 0.9614448856056382
253
+ name: Manhattan Ap
254
+ - type: euclidean_accuracy
255
+ value: 0.9423868312757202
256
+ name: Euclidean Accuracy
257
+ - type: euclidean_accuracy_threshold
258
+ value: 0.6555726528167725
259
+ name: Euclidean Accuracy Threshold
260
+ - type: euclidean_f1
261
+ value: 0.9363636363636363
262
+ name: Euclidean F1
263
+ - type: euclidean_f1_threshold
264
+ value: 0.6555726528167725
265
+ name: Euclidean F1 Threshold
266
+ - type: euclidean_precision
267
+ value: 0.9196428571428571
268
+ name: Euclidean Precision
269
+ - type: euclidean_recall
270
+ value: 0.9537037037037037
271
+ name: Euclidean Recall
272
+ - type: euclidean_ap
273
+ value: 0.9629460493565268
274
+ name: Euclidean Ap
275
+ - type: max_accuracy
276
+ value: 0.9423868312757202
277
+ name: Max Accuracy
278
+ - type: max_accuracy_threshold
279
+ value: 10.554386138916016
280
+ name: Max Accuracy Threshold
281
+ - type: max_f1
282
+ value: 0.9363636363636363
283
+ name: Max F1
284
+ - type: max_f1_threshold
285
+ value: 10.554386138916016
286
+ name: Max F1 Threshold
287
+ - type: max_precision
288
+ value: 0.9196428571428571
289
+ name: Max Precision
290
+ - type: max_recall
291
+ value: 0.9722222222222222
292
+ name: Max Recall
293
+ - type: max_ap
294
+ value: 0.9629460493565268
295
+ name: Max Ap
296
+ - task:
297
+ type: binary-classification
298
+ name: Binary Classification
299
+ dataset:
300
+ name: pair class test
301
+ type: pair-class-test
302
+ metrics:
303
+ - type: cosine_accuracy
304
+ value: 0.9423868312757202
305
+ name: Cosine Accuracy
306
+ - type: cosine_accuracy_threshold
307
+ value: 0.7851011753082275
308
+ name: Cosine Accuracy Threshold
309
+ - type: cosine_f1
310
+ value: 0.9363636363636363
311
+ name: Cosine F1
312
+ - type: cosine_f1_threshold
313
+ value: 0.7851011753082275
314
+ name: Cosine F1 Threshold
315
+ - type: cosine_precision
316
+ value: 0.9196428571428571
317
+ name: Cosine Precision
318
+ - type: cosine_recall
319
+ value: 0.9537037037037037
320
+ name: Cosine Recall
321
+ - type: cosine_ap
322
+ value: 0.9629460493565268
323
+ name: Cosine Ap
324
+ - type: dot_accuracy
325
+ value: 0.9423868312757202
326
+ name: Dot Accuracy
327
+ - type: dot_accuracy_threshold
328
+ value: 0.7851011753082275
329
+ name: Dot Accuracy Threshold
330
+ - type: dot_f1
331
+ value: 0.9363636363636363
332
+ name: Dot F1
333
+ - type: dot_f1_threshold
334
+ value: 0.7851011753082275
335
+ name: Dot F1 Threshold
336
+ - type: dot_precision
337
+ value: 0.9196428571428571
338
+ name: Dot Precision
339
+ - type: dot_recall
340
+ value: 0.9537037037037037
341
+ name: Dot Recall
342
+ - type: dot_ap
343
+ value: 0.9629460493565268
344
+ name: Dot Ap
345
+ - type: manhattan_accuracy
346
+ value: 0.9382716049382716
347
+ name: Manhattan Accuracy
348
+ - type: manhattan_accuracy_threshold
349
+ value: 10.554386138916016
350
+ name: Manhattan Accuracy Threshold
351
+ - type: manhattan_f1
352
+ value: 0.9333333333333333
353
+ name: Manhattan F1
354
+ - type: manhattan_f1_threshold
355
+ value: 10.554386138916016
356
+ name: Manhattan F1 Threshold
357
+ - type: manhattan_precision
358
+ value: 0.8974358974358975
359
+ name: Manhattan Precision
360
+ - type: manhattan_recall
361
+ value: 0.9722222222222222
362
+ name: Manhattan Recall
363
+ - type: manhattan_ap
364
+ value: 0.9614448856056382
365
+ name: Manhattan Ap
366
+ - type: euclidean_accuracy
367
+ value: 0.9423868312757202
368
+ name: Euclidean Accuracy
369
+ - type: euclidean_accuracy_threshold
370
+ value: 0.6555726528167725
371
+ name: Euclidean Accuracy Threshold
372
+ - type: euclidean_f1
373
+ value: 0.9363636363636363
374
+ name: Euclidean F1
375
+ - type: euclidean_f1_threshold
376
+ value: 0.6555726528167725
377
+ name: Euclidean F1 Threshold
378
+ - type: euclidean_precision
379
+ value: 0.9196428571428571
380
+ name: Euclidean Precision
381
+ - type: euclidean_recall
382
+ value: 0.9537037037037037
383
+ name: Euclidean Recall
384
+ - type: euclidean_ap
385
+ value: 0.9629460493565268
386
+ name: Euclidean Ap
387
+ - type: max_accuracy
388
+ value: 0.9423868312757202
389
+ name: Max Accuracy
390
+ - type: max_accuracy_threshold
391
+ value: 10.554386138916016
392
+ name: Max Accuracy Threshold
393
+ - type: max_f1
394
+ value: 0.9363636363636363
395
+ name: Max F1
396
+ - type: max_f1_threshold
397
+ value: 10.554386138916016
398
+ name: Max F1 Threshold
399
+ - type: max_precision
400
+ value: 0.9196428571428571
401
+ name: Max Precision
402
+ - type: max_recall
403
+ value: 0.9722222222222222
404
+ name: Max Recall
405
+ - type: max_ap
406
+ value: 0.9629460493565268
407
+ name: Max Ap
408
+ ---
409
+
410
+ # SentenceTransformer based on intfloat/multilingual-e5-small
411
+
412
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
413
+
414
+ ## Model Details
415
+
416
+ ### Model Description
417
+ - **Model Type:** Sentence Transformer
418
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
419
+ - **Maximum Sequence Length:** 512 tokens
420
+ - **Output Dimensionality:** 384 tokens
421
+ - **Similarity Function:** Cosine Similarity
422
+ <!-- - **Training Dataset:** Unknown -->
423
+ <!-- - **Language:** Unknown -->
424
+ <!-- - **License:** Unknown -->
425
+
426
+ ### Model Sources
427
+
428
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
429
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
430
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
431
+
432
+ ### Full Model Architecture
433
+
434
+ ```
435
+ SentenceTransformer(
436
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
437
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
438
+ (2): Normalize()
439
+ )
440
+ ```
441
+
442
+ ## Usage
443
+
444
+ ### Direct Usage (Sentence Transformers)
445
+
446
+ First install the Sentence Transformers library:
447
+
448
+ ```bash
449
+ pip install -U sentence-transformers
450
+ ```
451
+
452
+ Then you can load this model and run inference.
453
+ ```python
454
+ from sentence_transformers import SentenceTransformer
455
+
456
+ # Download from the 🤗 Hub
457
+ model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-3")
458
+ # Run inference
459
+ sentences = [
460
+ 'What is the melting point of ice at sea level?',
461
+ 'What is the boiling point of water at sea level?',
462
+ 'Can you recommend a good restaurant nearby?',
463
+ ]
464
+ embeddings = model.encode(sentences)
465
+ print(embeddings.shape)
466
+ # [3, 384]
467
+
468
+ # Get the similarity scores for the embeddings
469
+ similarities = model.similarity(embeddings, embeddings)
470
+ print(similarities.shape)
471
+ # [3, 3]
472
+ ```
473
+
474
+ <!--
475
+ ### Direct Usage (Transformers)
476
+
477
+ <details><summary>Click to see the direct usage in Transformers</summary>
478
+
479
+ </details>
480
+ -->
481
+
482
+ <!--
483
+ ### Downstream Usage (Sentence Transformers)
484
+
485
+ You can finetune this model on your own dataset.
486
+
487
+ <details><summary>Click to expand</summary>
488
+
489
+ </details>
490
+ -->
491
+
492
+ <!--
493
+ ### Out-of-Scope Use
494
+
495
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
496
+ -->
497
+
498
+ ## Evaluation
499
+
500
+ ### Metrics
501
+
502
+ #### Binary Classification
503
+ * Dataset: `pair-class-dev`
504
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:-----------------------------|:-----------|
508
+ | cosine_accuracy | 0.6337 |
509
+ | cosine_accuracy_threshold | 0.9371 |
510
+ | cosine_f1 | 0.6735 |
511
+ | cosine_f1_threshold | 0.9089 |
512
+ | cosine_precision | 0.5355 |
513
+ | cosine_recall | 0.9074 |
514
+ | cosine_ap | 0.6319 |
515
+ | dot_accuracy | 0.6337 |
516
+ | dot_accuracy_threshold | 0.9371 |
517
+ | dot_f1 | 0.6735 |
518
+ | dot_f1_threshold | 0.9089 |
519
+ | dot_precision | 0.5355 |
520
+ | dot_recall | 0.9074 |
521
+ | dot_ap | 0.6319 |
522
+ | manhattan_accuracy | 0.6379 |
523
+ | manhattan_accuracy_threshold | 5.582 |
524
+ | manhattan_f1 | 0.6713 |
525
+ | manhattan_f1_threshold | 6.5328 |
526
+ | manhattan_precision | 0.5359 |
527
+ | manhattan_recall | 0.8981 |
528
+ | manhattan_ap | 0.6426 |
529
+ | euclidean_accuracy | 0.6337 |
530
+ | euclidean_accuracy_threshold | 0.3547 |
531
+ | euclidean_f1 | 0.6735 |
532
+ | euclidean_f1_threshold | 0.4269 |
533
+ | euclidean_precision | 0.5355 |
534
+ | euclidean_recall | 0.9074 |
535
+ | euclidean_ap | 0.6319 |
536
+ | max_accuracy | 0.6379 |
537
+ | max_accuracy_threshold | 5.582 |
538
+ | max_f1 | 0.6735 |
539
+ | max_f1_threshold | 6.5328 |
540
+ | max_precision | 0.5359 |
541
+ | max_recall | 0.9074 |
542
+ | **max_ap** | **0.6426** |
543
+
544
+ #### Binary Classification
545
+ * Dataset: `pair-class-dev`
546
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
547
+
548
+ | Metric | Value |
549
+ |:-----------------------------|:-----------|
550
+ | cosine_accuracy | 0.9424 |
551
+ | cosine_accuracy_threshold | 0.7851 |
552
+ | cosine_f1 | 0.9364 |
553
+ | cosine_f1_threshold | 0.7851 |
554
+ | cosine_precision | 0.9196 |
555
+ | cosine_recall | 0.9537 |
556
+ | cosine_ap | 0.9629 |
557
+ | dot_accuracy | 0.9424 |
558
+ | dot_accuracy_threshold | 0.7851 |
559
+ | dot_f1 | 0.9364 |
560
+ | dot_f1_threshold | 0.7851 |
561
+ | dot_precision | 0.9196 |
562
+ | dot_recall | 0.9537 |
563
+ | dot_ap | 0.9629 |
564
+ | manhattan_accuracy | 0.9383 |
565
+ | manhattan_accuracy_threshold | 10.5544 |
566
+ | manhattan_f1 | 0.9333 |
567
+ | manhattan_f1_threshold | 10.5544 |
568
+ | manhattan_precision | 0.8974 |
569
+ | manhattan_recall | 0.9722 |
570
+ | manhattan_ap | 0.9614 |
571
+ | euclidean_accuracy | 0.9424 |
572
+ | euclidean_accuracy_threshold | 0.6556 |
573
+ | euclidean_f1 | 0.9364 |
574
+ | euclidean_f1_threshold | 0.6556 |
575
+ | euclidean_precision | 0.9196 |
576
+ | euclidean_recall | 0.9537 |
577
+ | euclidean_ap | 0.9629 |
578
+ | max_accuracy | 0.9424 |
579
+ | max_accuracy_threshold | 10.5544 |
580
+ | max_f1 | 0.9364 |
581
+ | max_f1_threshold | 10.5544 |
582
+ | max_precision | 0.9196 |
583
+ | max_recall | 0.9722 |
584
+ | **max_ap** | **0.9629** |
585
+
586
+ #### Binary Classification
587
+ * Dataset: `pair-class-test`
588
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
589
+
590
+ | Metric | Value |
591
+ |:-----------------------------|:-----------|
592
+ | cosine_accuracy | 0.9424 |
593
+ | cosine_accuracy_threshold | 0.7851 |
594
+ | cosine_f1 | 0.9364 |
595
+ | cosine_f1_threshold | 0.7851 |
596
+ | cosine_precision | 0.9196 |
597
+ | cosine_recall | 0.9537 |
598
+ | cosine_ap | 0.9629 |
599
+ | dot_accuracy | 0.9424 |
600
+ | dot_accuracy_threshold | 0.7851 |
601
+ | dot_f1 | 0.9364 |
602
+ | dot_f1_threshold | 0.7851 |
603
+ | dot_precision | 0.9196 |
604
+ | dot_recall | 0.9537 |
605
+ | dot_ap | 0.9629 |
606
+ | manhattan_accuracy | 0.9383 |
607
+ | manhattan_accuracy_threshold | 10.5544 |
608
+ | manhattan_f1 | 0.9333 |
609
+ | manhattan_f1_threshold | 10.5544 |
610
+ | manhattan_precision | 0.8974 |
611
+ | manhattan_recall | 0.9722 |
612
+ | manhattan_ap | 0.9614 |
613
+ | euclidean_accuracy | 0.9424 |
614
+ | euclidean_accuracy_threshold | 0.6556 |
615
+ | euclidean_f1 | 0.9364 |
616
+ | euclidean_f1_threshold | 0.6556 |
617
+ | euclidean_precision | 0.9196 |
618
+ | euclidean_recall | 0.9537 |
619
+ | euclidean_ap | 0.9629 |
620
+ | max_accuracy | 0.9424 |
621
+ | max_accuracy_threshold | 10.5544 |
622
+ | max_f1 | 0.9364 |
623
+ | max_f1_threshold | 10.5544 |
624
+ | max_precision | 0.9196 |
625
+ | max_recall | 0.9722 |
626
+ | **max_ap** | **0.9629** |
627
+
628
+ <!--
629
+ ## Bias, Risks and Limitations
630
+
631
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
632
+ -->
633
+
634
+ <!--
635
+ ### Recommendations
636
+
637
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
638
+ -->
639
+
640
+ ## Training Details
641
+
642
+ ### Training Dataset
643
+
644
+ #### Unnamed Dataset
645
+
646
+
647
+ * Size: 971 training samples
648
+ * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
649
+ * Approximate statistics based on the first 1000 samples:
650
+ | | sentence2 | sentence1 | label |
651
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
652
+ | type | string | string | int |
653
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.12 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~48.61%</li><li>1: ~51.39%</li></ul> |
654
+ * Samples:
655
+ | sentence2 | sentence1 | label |
656
+ |:----------------------------------------------------------|:--------------------------------------------------------|:---------------|
657
+ | <code>Total number of bones in an adult human body</code> | <code>How many bones are in the human body?</code> | <code>1</code> |
658
+ | <code>What is the largest river in North America?</code> | <code>What is the largest lake in North America?</code> | <code>0</code> |
659
+ | <code>What is the capital of Australia?</code> | <code>What is the capital of New Zealand?</code> | <code>0</code> |
660
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
661
+
662
+ ### Evaluation Dataset
663
+
664
+ #### Unnamed Dataset
665
+
666
+
667
+ * Size: 243 evaluation samples
668
+ * Columns: <code>sentence2</code>, <code>sentence1</code>, and <code>label</code>
669
+ * Approximate statistics based on the first 1000 samples:
670
+ | | sentence2 | sentence1 | label |
671
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
672
+ | type | string | string | int |
673
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.09 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.55 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~55.56%</li><li>1: ~44.44%</li></ul> |
674
+ * Samples:
675
+ | sentence2 | sentence1 | label |
676
+ |:-------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
677
+ | <code>What are the various forms of renewable energy?</code> | <code>What are the different types of renewable energy?</code> | <code>1</code> |
678
+ | <code>Gravity discoverer</code> | <code>Who discovered gravity?</code> | <code>1</code> |
679
+ | <code>Can you help me write this report?</code> | <code>Can you help me understand this report?</code> | <code>0</code> |
680
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
681
+
682
+ ### Training Hyperparameters
683
+ #### Non-Default Hyperparameters
684
+
685
+ - `eval_strategy`: epoch
686
+ - `per_device_train_batch_size`: 32
687
+ - `per_device_eval_batch_size`: 32
688
+ - `gradient_accumulation_steps`: 2
689
+ - `learning_rate`: 3e-06
690
+ - `weight_decay`: 0.01
691
+ - `num_train_epochs`: 20
692
+ - `lr_scheduler_type`: reduce_lr_on_plateau
693
+ - `warmup_ratio`: 0.1
694
+ - `load_best_model_at_end`: True
695
+ - `optim`: adamw_torch_fused
696
+
697
+ #### All Hyperparameters
698
+ <details><summary>Click to expand</summary>
699
+
700
+ - `overwrite_output_dir`: False
701
+ - `do_predict`: False
702
+ - `eval_strategy`: epoch
703
+ - `prediction_loss_only`: True
704
+ - `per_device_train_batch_size`: 32
705
+ - `per_device_eval_batch_size`: 32
706
+ - `per_gpu_train_batch_size`: None
707
+ - `per_gpu_eval_batch_size`: None
708
+ - `gradient_accumulation_steps`: 2
709
+ - `eval_accumulation_steps`: None
710
+ - `learning_rate`: 3e-06
711
+ - `weight_decay`: 0.01
712
+ - `adam_beta1`: 0.9
713
+ - `adam_beta2`: 0.999
714
+ - `adam_epsilon`: 1e-08
715
+ - `max_grad_norm`: 1.0
716
+ - `num_train_epochs`: 20
717
+ - `max_steps`: -1
718
+ - `lr_scheduler_type`: reduce_lr_on_plateau
719
+ - `lr_scheduler_kwargs`: {}
720
+ - `warmup_ratio`: 0.1
721
+ - `warmup_steps`: 0
722
+ - `log_level`: passive
723
+ - `log_level_replica`: warning
724
+ - `log_on_each_node`: True
725
+ - `logging_nan_inf_filter`: True
726
+ - `save_safetensors`: True
727
+ - `save_on_each_node`: False
728
+ - `save_only_model`: False
729
+ - `restore_callback_states_from_checkpoint`: False
730
+ - `no_cuda`: False
731
+ - `use_cpu`: False
732
+ - `use_mps_device`: False
733
+ - `seed`: 42
734
+ - `data_seed`: None
735
+ - `jit_mode_eval`: False
736
+ - `use_ipex`: False
737
+ - `bf16`: False
738
+ - `fp16`: False
739
+ - `fp16_opt_level`: O1
740
+ - `half_precision_backend`: auto
741
+ - `bf16_full_eval`: False
742
+ - `fp16_full_eval`: False
743
+ - `tf32`: None
744
+ - `local_rank`: 0
745
+ - `ddp_backend`: None
746
+ - `tpu_num_cores`: None
747
+ - `tpu_metrics_debug`: False
748
+ - `debug`: []
749
+ - `dataloader_drop_last`: False
750
+ - `dataloader_num_workers`: 0
751
+ - `dataloader_prefetch_factor`: None
752
+ - `past_index`: -1
753
+ - `disable_tqdm`: False
754
+ - `remove_unused_columns`: True
755
+ - `label_names`: None
756
+ - `load_best_model_at_end`: True
757
+ - `ignore_data_skip`: False
758
+ - `fsdp`: []
759
+ - `fsdp_min_num_params`: 0
760
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
761
+ - `fsdp_transformer_layer_cls_to_wrap`: None
762
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
763
+ - `deepspeed`: None
764
+ - `label_smoothing_factor`: 0.0
765
+ - `optim`: adamw_torch_fused
766
+ - `optim_args`: None
767
+ - `adafactor`: False
768
+ - `group_by_length`: False
769
+ - `length_column_name`: length
770
+ - `ddp_find_unused_parameters`: None
771
+ - `ddp_bucket_cap_mb`: None
772
+ - `ddp_broadcast_buffers`: False
773
+ - `dataloader_pin_memory`: True
774
+ - `dataloader_persistent_workers`: False
775
+ - `skip_memory_metrics`: True
776
+ - `use_legacy_prediction_loop`: False
777
+ - `push_to_hub`: False
778
+ - `resume_from_checkpoint`: None
779
+ - `hub_model_id`: None
780
+ - `hub_strategy`: every_save
781
+ - `hub_private_repo`: False
782
+ - `hub_always_push`: False
783
+ - `gradient_checkpointing`: False
784
+ - `gradient_checkpointing_kwargs`: None
785
+ - `include_inputs_for_metrics`: False
786
+ - `eval_do_concat_batches`: True
787
+ - `fp16_backend`: auto
788
+ - `push_to_hub_model_id`: None
789
+ - `push_to_hub_organization`: None
790
+ - `mp_parameters`:
791
+ - `auto_find_batch_size`: False
792
+ - `full_determinism`: False
793
+ - `torchdynamo`: None
794
+ - `ray_scope`: last
795
+ - `ddp_timeout`: 1800
796
+ - `torch_compile`: False
797
+ - `torch_compile_backend`: None
798
+ - `torch_compile_mode`: None
799
+ - `dispatch_batches`: None
800
+ - `split_batches`: None
801
+ - `include_tokens_per_second`: False
802
+ - `include_num_input_tokens_seen`: False
803
+ - `neftune_noise_alpha`: None
804
+ - `optim_target_modules`: None
805
+ - `batch_eval_metrics`: False
806
+ - `batch_sampler`: batch_sampler
807
+ - `multi_dataset_batch_sampler`: proportional
808
+
809
+ </details>
810
+
811
+ ### Training Logs
812
+ | Epoch | Step | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
813
+ |:-----------:|:-------:|:----------:|:---------------------:|:----------------------:|
814
+ | 0 | 0 | - | 0.6426 | - |
815
+ | 0.9677 | 15 | 3.1481 | 0.7843 | - |
816
+ | 2.0 | 31 | 2.1820 | 0.8692 | - |
817
+ | 2.9677 | 46 | 1.8185 | 0.9078 | - |
818
+ | 4.0 | 62 | 1.5769 | 0.9252 | - |
819
+ | 4.9677 | 77 | 1.4342 | 0.9310 | - |
820
+ | 6.0 | 93 | 1.3544 | 0.9357 | - |
821
+ | 6.9677 | 108 | 1.2630 | 0.9402 | - |
822
+ | 8.0 | 124 | 1.2120 | 0.9444 | - |
823
+ | 8.9677 | 139 | 1.1641 | 0.9454 | - |
824
+ | 10.0 | 155 | 1.0481 | 0.9464 | - |
825
+ | 10.9677 | 170 | 0.9324 | 0.9509 | - |
826
+ | 12.0 | 186 | 0.8386 | 0.9556 | - |
827
+ | 12.9677 | 201 | 0.7930 | 0.9577 | - |
828
+ | 14.0 | 217 | 0.7564 | 0.9599 | - |
829
+ | 14.9677 | 232 | 0.7480 | 0.9606 | - |
830
+ | 16.0 | 248 | 0.6733 | 0.9614 | - |
831
+ | 16.9677 | 263 | 0.6434 | 0.9621 | - |
832
+ | 18.0 | 279 | 0.6411 | 0.9630 | - |
833
+ | 18.9677 | 294 | 0.6383 | 0.9632 | - |
834
+ | **19.3548** | **300** | **0.6365** | **0.9629** | **0.9629** |
835
+
836
+ * The bold row denotes the saved checkpoint.
837
+
838
+ ### Framework Versions
839
+ - Python: 3.10.12
840
+ - Sentence Transformers: 3.0.1
841
+ - Transformers: 4.41.2
842
+ - PyTorch: 2.1.2+cu121
843
+ - Accelerate: 0.32.1
844
+ - Datasets: 2.19.1
845
+ - Tokenizers: 0.19.1
846
+
847
+ ## Citation
848
+
849
+ ### BibTeX
850
+
851
+ #### Sentence Transformers
852
+ ```bibtex
853
+ @inproceedings{reimers-2019-sentence-bert,
854
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
855
+ author = "Reimers, Nils and Gurevych, Iryna",
856
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
857
+ month = "11",
858
+ year = "2019",
859
+ publisher = "Association for Computational Linguistics",
860
+ url = "https://arxiv.org/abs/1908.10084",
861
+ }
862
+ ```
863
+
864
+ <!--
865
+ ## Glossary
866
+
867
+ *Clearly define terms in order to be accessible across audiences.*
868
+ -->
869
+
870
+ <!--
871
+ ## Model Card Authors
872
+
873
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
874
+ -->
875
+
876
+ <!--
877
+ ## Model Card Contact
878
+
879
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
880
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91dc44dc85a13b331169974e2c02ccc69a5f27f5a7eb11093c6e2528e046c6ed
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }