File size: 2,822 Bytes
7ce8a3a 8213156 7ce8a3a 8213156 7ce8a3a 8213156 7ce8a3a 428d6d1 b1c2fe1 acf2ef1 8213156 7ce8a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: srikrishnateja/vit-base-patch16-224-in21k-euroSat
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# srikrishnateja/vit-base-patch16-224-in21k-euroSat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0403
- Train Accuracy: 0.9952
- Train Top-3-accuracy: 1.0
- Validation Loss: 0.1351
- Validation Accuracy: 0.9645
- Validation Top-3-accuracy: 1.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 425, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.4326 | 0.8143 | 1.0 | 0.2613 | 0.9102 | 1.0 | 0 |
| 0.1770 | 0.9413 | 1.0 | 0.1919 | 0.9332 | 1.0 | 1 |
| 0.0943 | 0.9760 | 1.0 | 0.1654 | 0.9436 | 1.0 | 2 |
| 0.0576 | 0.9863 | 1.0 | 0.1457 | 0.9520 | 1.0 | 3 |
| 0.0403 | 0.9952 | 1.0 | 0.1351 | 0.9645 | 1.0 | 4 |
### Framework versions
- Transformers 4.38.1
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.1
|