--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert_finetuned-clinc results: - task: type: text-classification name: Text Classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - type: accuracy value: 0.9161290322580645 name: Accuracy --- # distilbert_finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7799 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2788 | 0.7371 | | 3.7785 | 2.0 | 636 | 1.8739 | 0.8358 | | 3.7785 | 3.0 | 954 | 1.1618 | 0.8923 | | 1.6926 | 4.0 | 1272 | 0.8647 | 0.9090 | | 0.9104 | 5.0 | 1590 | 0.7799 | 0.9161 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.11.6