|
"""BERT NER Inference.""" |
|
|
|
import json |
|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
from nltk import word_tokenize |
|
from pytorch_transformers import (BertForTokenClassification, BertTokenizer) |
|
|
|
|
|
class BertNer(BertForTokenClassification): |
|
|
|
def forward(self, input_ids, token_type_ids=None, attention_mask=None, valid_ids=None): |
|
sequence_output = self.bert(input_ids, token_type_ids, attention_mask, head_mask=None)[0] |
|
batch_size,max_len,feat_dim = sequence_output.shape |
|
|
|
valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cpu') |
|
for i in range(batch_size): |
|
jj = -1 |
|
for j in range(max_len): |
|
if valid_ids[i][j].item() == 1: |
|
jj += 1 |
|
valid_output[i][jj] = sequence_output[i][j] |
|
sequence_output = self.dropout(valid_output) |
|
logits = self.classifier(sequence_output) |
|
return logits |
|
|
|
class BIOBERT_Ner: |
|
|
|
def __init__(self,model_dir: str): |
|
self.model , self.tokenizer, self.model_config = self.load_model(model_dir) |
|
self.label_map = self.model_config["label_map"] |
|
self.max_seq_length = self.model_config["max_seq_length"] |
|
self.label_map = {int(k):v for k,v in self.label_map.items()} |
|
self.device = "cpu" |
|
|
|
self.model = self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def load_model(self, model_dir: str, model_config: str = "model_config.json"): |
|
model_config = os.path.join(model_dir,model_config) |
|
model_config = json.load(open(model_config)) |
|
model = BertNer.from_pretrained(model_dir) |
|
tokenizer = BertTokenizer.from_pretrained(model_dir, do_lower_case=model_config["do_lower"]) |
|
return model, tokenizer, model_config |
|
|
|
def tokenize(self, text: str): |
|
""" tokenize input""" |
|
words = word_tokenize(text) |
|
tokens = [] |
|
valid_positions = [] |
|
for i,word in enumerate(words): |
|
token = self.tokenizer.tokenize(word) |
|
tokens.extend(token) |
|
for i in range(len(token)): |
|
if i == 0: |
|
valid_positions.append(1) |
|
else: |
|
valid_positions.append(0) |
|
return tokens, valid_positions |
|
|
|
def preprocess(self, text: str): |
|
""" preprocess """ |
|
|
|
tokens, valid_positions = self.tokenize(text) |
|
|
|
|
|
tokens.insert(0,"[CLS]") |
|
|
|
valid_positions.insert(0,1) |
|
|
|
|
|
tokens.append("[SEP]") |
|
|
|
valid_positions.append(1) |
|
segment_ids = [] |
|
for i in range(len(tokens)): |
|
segment_ids.append(0) |
|
input_ids = self.tokenizer.convert_tokens_to_ids(tokens) |
|
input_mask = [1] * len(input_ids) |
|
while len(input_ids) < self.max_seq_length: |
|
input_ids.append(0) |
|
input_mask.append(0) |
|
segment_ids.append(0) |
|
valid_positions.append(0) |
|
return input_ids,input_mask,segment_ids,valid_positions |
|
|
|
def predict_entity(self, B_lab, I_lab, words, labels, entity_list): |
|
temp=[] |
|
entity=[] |
|
|
|
for word, label, B_l, I_l in zip(words, labels, B_lab, I_lab): |
|
|
|
if ((label==B_l) or (label==I_l)) and label!='O': |
|
if label==B_l: |
|
entity.append(temp) |
|
temp=[] |
|
temp.append(label) |
|
|
|
temp.append(word) |
|
|
|
entity.append(temp) |
|
|
|
entity_name_label = [] |
|
for entity_name in entity[1:]: |
|
for ent_key, ent_value in entity_list.items(): |
|
if (ent_key==entity_name[0]): |
|
entity_name_label.append([' '.join(entity_name[1:]), ent_value]) |
|
|
|
return entity_name_label |
|
|
|
def predict(self, text: str): |
|
print("text:", text) |
|
input_ids,input_mask,segment_ids,valid_ids = self.preprocess(text) |
|
input_ids = torch.tensor([input_ids],dtype=torch.long,device=self.device) |
|
input_mask = torch.tensor([input_mask],dtype=torch.long,device=self.device) |
|
segment_ids = torch.tensor([segment_ids],dtype=torch.long,device=self.device) |
|
valid_ids = torch.tensor([valid_ids],dtype=torch.long,device=self.device) |
|
|
|
with torch.no_grad(): |
|
logits = self.model(input_ids, segment_ids, input_mask,valid_ids) |
|
logits = F.softmax(logits,dim=2) |
|
logits_label = torch.argmax(logits,dim=2) |
|
logits_label = logits_label.detach().cpu().numpy().tolist()[0] |
|
|
|
logits = [] |
|
pos = 0 |
|
for index,mask in enumerate(valid_ids[0]): |
|
if index == 0: |
|
continue |
|
if mask == 1: |
|
logits.append((logits_label[index-pos])) |
|
else: |
|
pos += 1 |
|
logits.pop() |
|
labels = [(self.label_map[label]) for label in logits] |
|
words = word_tokenize(text) |
|
|
|
entity_list = {'B-ANATOMY':'Anatomy', 'B-GENE':'Gene', 'B-CHEMICAL':'Chemical', 'B-DISEASE':'Disease', 'B-PROTEIN':'Protein', 'B-ORGANISM':'Organism', 'B-CANCER':'Cancer', 'B-ORGAN':'Organ', 'B-CELL':'Cell', 'B-TISSUE':'Tissue', 'B-PATHOLOGY_TERM':'Pathlogy', 'B-COMPLEX':'Complex', 'B-TAXON':'Taxon'} |
|
|
|
B_labels=[] |
|
I_labels=[] |
|
for label in labels: |
|
if (label[:1]=='B'): |
|
B_labels.append(label) |
|
I_labels.append('O') |
|
elif (label[:1]=='I'): |
|
I_labels.append(label) |
|
B_labels.append('O') |
|
else: |
|
B_labels.append('O') |
|
I_labels.append('O') |
|
|
|
assert len(labels) == len(words) == len(I_labels) == len(B_labels) |
|
|
|
output = self.predict_entity(B_labels, I_labels, words, labels, entity_list) |
|
|
|
return output |
|
|
|
|
|
|