Delete main
Browse files
main
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from peft import PeftModel, PeftConfig
|
3 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
-
|
5 |
-
peft_model_id = "ybelkada/flan-t5-large-financial-phrasebank-lora"
|
6 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
7 |
-
|
8 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, torch_dtype="auto", device_map="auto")
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
10 |
-
|
11 |
-
# Load the Lora model
|
12 |
-
model = PeftModel.from_pretrained(model, peft_model_id)
|
13 |
-
|
14 |
-
model.eval()
|
15 |
-
input_text = "In January-September 2009 , the Group 's net interest income increased to EUR 112.4 mn from EUR 74.3 mn in January-September 2008 ."
|
16 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
17 |
-
|
18 |
-
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
|
19 |
-
|
20 |
-
print("input sentence: ", input_text)
|
21 |
-
print(" output prediction: ", tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|