File size: 2,534 Bytes
a66edf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# coding=utf-8
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch JapaneseStableLMAlpha model. """
import torch
from torch import nn
from transformers import (
InstructBlipPreTrainedModel,
InstructBlipVisionModel,
InstructBlipQFormerModel,
InstructBlipForConditionalGeneration,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
)
from transformers.utils import logging
from .modeling_japanese_stablelm_alpha import JapaneseStableLMAlphaForCausalLM
from .configuration_japanese_instructblip_alpha import JapaneseInstructBlipAlphaConfig
logger = logging.get_logger(__name__)
class JapaneseInstructBlipAlphaForConditionalGeneration(InstructBlipForConditionalGeneration):
config_class = JapaneseInstructBlipAlphaConfig
def __init__(self, config: JapaneseInstructBlipAlphaConfig):
InstructBlipPreTrainedModel.__init__(self, config)
self.vision_model = InstructBlipVisionModel(config.vision_config)
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size))
self.qformer = InstructBlipQFormerModel(config.qformer_config)
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size)
if config.use_decoder_only_language_model:
language_model = JapaneseStableLMAlphaForCausalLM(config.text_config)
else:
raise NotImplementedError
language_model = AutoModelForSeq2SeqLM.from_config(config.text_config, trust_remote_code=True,)
if language_model._no_split_modules is not None:
self._no_split_modules.extend(language_model._no_split_modules)
if language_model._keep_in_fp32_modules is not None:
self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules)
self.language_model = language_model
# Initialize weights and apply final processing
self.post_init()
|