File size: 8,888 Bytes
5dd3c8f
8cf2540
 
 
 
 
167fa29
 
 
 
 
 
 
 
 
b522390
3f24747
167fa29
 
 
 
 
 
5dd3c8f
37978d4
5dd3c8f
167fa29
5dd3c8f
87b82d9
5dd3c8f
167fa29
5dd3c8f
921b520
 
85ca782
167fa29
5dd3c8f
167fa29
 
5dd3c8f
37550b5
167fa29
37550b5
167fa29
 
5dd3c8f
93cf40a
167fa29
 
 
 
 
5dd3c8f
167fa29
 
37978d4
 
56b4bc6
167fa29
37550b5
5dd3c8f
37978d4
167fa29
5dd3c8f
ef28149
7441303
37550b5
7441303
 
 
 
 
 
042980a
7441303
 
 
 
 
042980a
7441303
 
 
 
 
 
 
37978d4
7441303
 
87b15b2
 
042980a
87b15b2
 
7441303
87b15b2
7441303
 
 
 
 
 
 
 
 
 
37550b5
7441303
37978d4
4a006f5
 
 
 
 
042980a
4a006f5
 
 
 
 
7441303
 
167fa29
5dd3c8f
167fa29
37978d4
167fa29
79f670a
167fa29
87b82d9
167fa29
042980a
5dd3c8f
167fa29
5dd3c8f
b522390
167fa29
 
 
 
 
 
 
 
93cf40a
3f24747
5dd3c8f
b522390
 
 
 
 
6f8ae24
5dd3c8f
167fa29
5dd3c8f
167fa29
5224e5e
5d3a767
 
 
 
 
 
 
 
5dd3c8f
167fa29
5224e5e
5d3a767
 
 
 
 
 
 
 
 
 
 
 
 
5dd3c8f
167fa29
5dd3c8f
167fa29
5dd3c8f
167fa29
5dd3c8f
167fa29
5dd3c8f
b522390
 
167fa29
 
5dd3c8f
042980a
 
4b7a4cd
042980a
 
 
 
 
 
4b7a4cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
language:
- en
license: other
tags:
- causal-lm
datasets:
- HuggingFaceH4/ultrachat_200k
- allenai/ultrafeedback_binarized_cleaned
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- Intel/orca_dpo_pairs
- hkust-nlp/deita-10k-v0
- Anthropic/hh-rlhf
- glaiveai/glaive-function-calling-v2
extra_gated_fields:
  Name: text
  Email: text
  Country: text
  Organization or Affiliation: text
  I ALLOW Stability AI to email me about new model releases: checkbox
---
# `StableLM 2 12B Chat`

## Model Description

`Stable LM 2 12B Chat` is a 12 billion parameter instruction tuned language model trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).

## Usage

**NOTE**: This model requires `transformers>=4.40.0`

`StableLM 2 12B Chat` uses the following instruction ChatML format.
This format is also available through the tokenizer's `apply_chat_template` method:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
    'stabilityai/stablelm-2-12b-chat',
    device_map="auto",
)

prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
    prompt,
    add_generation_prompt=True,
    return_tensors='pt'
)

tokens = model.generate(
    inputs.to(model.device),
    max_new_tokens=100,
    temperature=0.7,
    do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)

print(output)
```

StableLM 2 12B Chat also supports function calling. The following is an example of how to use it:
```python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
  {
    "type": "function",
    "function": {
      "name": "TextToImage",
      "description": "This function is able to create, draw, or illustrate an image from a text prompt.",
      "parameters": {
        "type": "object",
        "properties": {
          "prompt": {
            "type": "string",
            "description": "The description of image that the user wants to create."
          }
        },
        "required": [
          "prompt"
        ]
      }
    }
  }
]
"""
messages = [
    {'role': 'system', 'content': system_prompt},
    {'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]

inputs = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors='pt'
)

tokens = model.generate(
    inputs.to(model.device),
    max_new_tokens=1024,
    temperature=0.5,
    do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)

print(output)
"""
[
  {
    "name": "TextToImage",
    "arguments": {
      "prompt": "Eiffel Tower at night."
    }
  }
]
"""

```

## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM 2 12B Chat` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Paper**: [Stable LM 2 Chat Technical Report]((https://arxiv.org/abs/2402.17834)
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: 
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
* **Contact**: For questions and comments about the model, please email `lm@stability.ai`.

### Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets) as well as an internal safety dataset:
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
- openchat/openchat_sharegpt4_dataset
- LDJnr/Capybara
- hkust-nlp/deita-10k-v0
- teknium/OpenHermes-2.5
- glaiveai/glaive-function-calling-v2

2. Safety Datasets:
- Anthropic/hh-rlhf
- Internal Safety Dataset

3. Preference Datasets:
- argilla/dpo-mix-7k

## Performance

### MT-Bench

| Model                                 | Parameters | MT Bench (Inflection-corrected) |
|---------------------------------------|------------|---------------------------------|
| mistralai/Mixtral-8x7B-Instruct-v0.1 | 13B/47B    | 8.48 ± 0.06                    |
| stabilityai/stablelm-2-12b-chat       | 12B        | 8.15 ± 0.08                    |
| Qwen/Qwen1.5-14B-Chat                 | 14B        | 7.95 ± 0.10                    |
| HuggingFaceH4/zephyr-7b-gemma-v0.1    | 8.5B       | 7.82 ± 0.03                    |
| mistralai/Mistral-7B-Instruct-v0.2    | 7B         | 7.48 ± 0.02                    |
| meta-llama/Llama-2-70b-chat-hf        | 70B        | 7.29 ± 0.05                    |

### OpenLLM Leaderboard

| Model                                  | Parameters | Average | ARC Challenge (25-shot) | HellaSwag (10-shot) | MMLU (5-shot) | TruthfulQA (0-shot) | Winogrande (5-shot) | GSM8K (5-shot) |
| -------------------------------------- | ---------- | ------- | ---------------------- | ------------------- | ------------- | ------------------- | ------------------- | -------------- |
| mistralai/Mixtral-8x7B-Instruct-v0.1  | 13B/47B    | 72.71   | 70.14                  | 87.55               | 71.40         | 64.98               | 81.06               | 61.11          |
| stabilityai/stablelm-2-12b-chat        | 12B        | 68.45   | 65.02                  | 86.06               | 61.14         | 62.00               | 78.77               | 57.70          |
| Qwen/Qwen1.5-14B                       | 14B        | 66.70   | 56.57                  | 81.08               | 69.36         | 52.06               | 73.48               | 67.63          |
| mistralai/Mistral-7B-Instruct-v0.2     | 7B         | 65.71   | 63.14                  | 84.88               | 60.78         | 60.26               | 77.19               | 40.03          |
| HuggingFaceH4/zephyr-7b-gemma-v0.1     | 8.5B       | 62.41   | 58.45                  | 83.48               | 60.68         | 52.07               | 74.19               | 45.56          |
| Qwen/Qwen1.5-14B-Chat                  | 14B        | 62.37   | 58.79                  | 82.33               | 68.52         | 60.38               | 73.32               | 30.86          |
| google/gemma-7b                        | 8.5B       | 63.75   | 61.09                  | 82.20               | 64.56         | 44.79               | 79.01               | 50.87          |
| stabilityai/stablelm-2-12b             | 12B        | 63.53   | 58.45                  | 84.33               | 62.09         | 48.16               | 78.10               | 56.03          |
| mistralai/Mistral-7B-v0.1              | 7B         | 60.97   | 59.98                  | 83.31               | 64.16         | 42.15               | 78.37               | 37.83          |
| meta-llama/Llama-2-13b-hf              | 13B        | 55.69   | 59.39                  | 82.13               | 55.77         | 37.38               | 76.64               | 22.82          |
| meta-llama/Llama-2-13b-chat-hf         | 13B        | 54.92   | 59.04                  | 81.94               | 54.64         | 41.12               | 74.51               | 15.24          |

## Use and Limitations

### Intended Use

The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.

### Limitations and Bias

We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not hallucinations.
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.

## How to Cite

```
@article{bellagente2024stable,
  title={Stable LM 2 1.6 B Technical Report},
  author={Bellagente, Marco and Tow, Jonathan and Mahan, Dakota and Phung, Duy and Zhuravinskyi, Maksym and Adithyan, Reshinth and Baicoianu, James and Brooks, Ben and Cooper, Nathan and Datta, Ashish and others},
  journal={arXiv preprint arXiv:2402.17834},
  year={2024}
}
```