--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: edu-modernbert results: [] --- # edu-modernbert This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [HuggingFaceFW/fineweb-edu-llama3-annotations](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu-llama3-annotations) dataset. It achieves the following results on the evaluation set: - Loss: 0.2453 - Precision: 0.5901 - Recall: 0.5245 - F1: 0.5504 - Accuracy: 0.7508 - Binary Precision: 0.8168 - Binary Recall: 0.6856 - Binary F1: 0.7455 - Binary Accuracy: 0.9578
Note: the binary classification score is calculated by thresholding at 3 i.e (0-2 -> 0, 3-5 -> 1).
In comparison the reproduced version of [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) achieves: - Loss: 0.2475 - Precision: 0.5595 - Recall: 0.4360 - F1: 0.4704 - Accuracy: 0.7123 - Binary Precision: 0.7781 - Binary Recall: 0.5566 - Binary F1: 0.6490 - Binary Accuracy: 0.9457
Note: one difference is that ModernBERT-base is fully trained while the original classifier trains only the regression head..
## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20(totally not needed, 3 epochs already achieve great results) ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0