ddemszky
commited on
Commit
β’
7800c33
1
Parent(s):
062ea44
add custom handler
Browse files- __pycache__/handler.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- handler.py +83 -0
- requirements.txt +5 -0
- test.py +15 -0
- utils.py +192 -0
__pycache__/handler.cpython-39.pyc
ADDED
Binary file (3.15 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (6.51 kB). View file
|
|
handler.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from scipy.special import softmax
|
3 |
+
|
4 |
+
from utils import clean_str, clean_str_nopunct
|
5 |
+
import torch
|
6 |
+
from transformers import BertTokenizer
|
7 |
+
from utils import MultiHeadModel, BertInputBuilder, get_num_words
|
8 |
+
|
9 |
+
MODEL_CHECKPOINT='ddemszky/uptake-model'
|
10 |
+
|
11 |
+
class EndpointHandler():
|
12 |
+
def __init__(self, path="."):
|
13 |
+
print("Loading models...")
|
14 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
16 |
+
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
|
17 |
+
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
|
18 |
+
self.model.to(self.device)
|
19 |
+
self.max_length = 120
|
20 |
+
|
21 |
+
def get_clean_text(self, text, remove_punct=False):
|
22 |
+
if remove_punct:
|
23 |
+
return clean_str_nopunct(text)
|
24 |
+
return clean_str(text)
|
25 |
+
|
26 |
+
def get_prediction(self, instance):
|
27 |
+
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
|
28 |
+
for key in ["input_ids", "token_type_ids", "attention_mask"]:
|
29 |
+
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
|
30 |
+
instance[key].to(self.device)
|
31 |
+
|
32 |
+
output = self.model(input_ids=instance["input_ids"],
|
33 |
+
attention_mask=instance["attention_mask"],
|
34 |
+
token_type_ids=instance["token_type_ids"],
|
35 |
+
return_pooler_output=False)
|
36 |
+
return output
|
37 |
+
|
38 |
+
def get_uptake_score(self, utterances, speakerA, speakerB):
|
39 |
+
|
40 |
+
textA = self.get_clean_text(utterances[speakerA], remove_punct=False)
|
41 |
+
textB = self.get_clean_text(utterances[speakerB], remove_punct=False)
|
42 |
+
|
43 |
+
instance = self.input_builder.build_inputs([textA], textB,
|
44 |
+
max_length=self.max_length,
|
45 |
+
input_str=True)
|
46 |
+
output = self.get_prediction(instance)
|
47 |
+
uptake_score = softmax(output["nsp_logits"][0].tolist())[1]
|
48 |
+
return uptake_score
|
49 |
+
|
50 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
51 |
+
"""
|
52 |
+
data args:
|
53 |
+
inputs (:obj: `list`)
|
54 |
+
parameters (:obj: `dict`)
|
55 |
+
Return:
|
56 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
57 |
+
"""
|
58 |
+
# get inputs
|
59 |
+
inputs = data.pop("inputs", data)
|
60 |
+
params = data.pop("parameters", None)
|
61 |
+
|
62 |
+
utterances = inputs
|
63 |
+
print("EXAMPLES")
|
64 |
+
for utt_pair in utterances[:3]:
|
65 |
+
print("speaker A: %s" % utt_pair[params["speaker_A"]])
|
66 |
+
print("speaker B: %s" % utt_pair[params["speaker_B"]])
|
67 |
+
print("----")
|
68 |
+
|
69 |
+
print("Running inference on %d examples..." % len(utterances))
|
70 |
+
self.model.eval()
|
71 |
+
uptake_scores = []
|
72 |
+
with torch.no_grad():
|
73 |
+
for i, utt in enumerate(utterances):
|
74 |
+
prev_num_words = get_num_words(utt[params["speaker_A"]])
|
75 |
+
if prev_num_words < params["student_min_words"]:
|
76 |
+
uptake_scores.append(None)
|
77 |
+
continue
|
78 |
+
uptake_score = self.get_uptake_score(utterances=utt,
|
79 |
+
speakerA=params["speaker_A"],
|
80 |
+
speakerB=params["speaker_B"])
|
81 |
+
uptake_scores.append(uptake_score)
|
82 |
+
|
83 |
+
return uptake_scores
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cleantext==1.1.4
|
2 |
+
num2words==0.5.10
|
3 |
+
scipy==1.7.3
|
4 |
+
torch==1.10.2
|
5 |
+
transformers==4.25.1
|
test.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from handler import EndpointHandler
|
2 |
+
|
3 |
+
# init handler
|
4 |
+
my_handler = EndpointHandler(path=".")
|
5 |
+
|
6 |
+
# prepare sample payload
|
7 |
+
example = {"inputs": [{"speaker_A": "I am quite excited how this will turn out",
|
8 |
+
"speaker_B": "I'm excited, too"}],
|
9 |
+
"parameters": {"speaker_A": "speaker_A",
|
10 |
+
"speaker_B": "speaker_B",
|
11 |
+
"student_min_words": 5,
|
12 |
+
}}
|
13 |
+
|
14 |
+
# test the handler
|
15 |
+
print(my_handler(example))
|
utils.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
|
3 |
+
from torch import nn
|
4 |
+
from itertools import chain
|
5 |
+
from torch.nn import MSELoss, CrossEntropyLoss
|
6 |
+
from cleantext import clean
|
7 |
+
from num2words import num2words
|
8 |
+
import re
|
9 |
+
import string
|
10 |
+
|
11 |
+
punct_chars = list((set(string.punctuation) | {'β', 'β', 'β', 'β', '~', '|', 'β', 'β', 'β¦', "'", "`", '_'}))
|
12 |
+
punct_chars.sort()
|
13 |
+
punctuation = ''.join(punct_chars)
|
14 |
+
replace = re.compile('[%s]' % re.escape(punctuation))
|
15 |
+
|
16 |
+
def get_num_words(text):
|
17 |
+
if not isinstance(text, str):
|
18 |
+
print("%s is not a string" % text)
|
19 |
+
text = replace.sub(' ', text)
|
20 |
+
text = re.sub(r'\s+', ' ', text)
|
21 |
+
text = text.strip()
|
22 |
+
text = re.sub(r'\[.+\]', " ", text)
|
23 |
+
return len(text.split())
|
24 |
+
|
25 |
+
def number_to_words(num):
|
26 |
+
try:
|
27 |
+
return num2words(re.sub(",", "", num))
|
28 |
+
except:
|
29 |
+
return num
|
30 |
+
|
31 |
+
|
32 |
+
clean_str = lambda s: clean(s,
|
33 |
+
fix_unicode=True, # fix various unicode errors
|
34 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
35 |
+
lower=True, # lowercase text
|
36 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
37 |
+
no_urls=True, # replace all URLs with a special token
|
38 |
+
no_emails=True, # replace all email addresses with a special token
|
39 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
40 |
+
no_numbers=True, # replace all numbers with a special token
|
41 |
+
no_digits=False, # replace all digits with a special token
|
42 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
43 |
+
no_punct=False, # fully remove punctuation
|
44 |
+
replace_with_url="<URL>",
|
45 |
+
replace_with_email="<EMAIL>",
|
46 |
+
replace_with_phone_number="<PHONE>",
|
47 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
48 |
+
replace_with_digit="0",
|
49 |
+
replace_with_currency_symbol="<CUR>",
|
50 |
+
lang="en"
|
51 |
+
)
|
52 |
+
|
53 |
+
clean_str_nopunct = lambda s: clean(s,
|
54 |
+
fix_unicode=True, # fix various unicode errors
|
55 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
56 |
+
lower=True, # lowercase text
|
57 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
58 |
+
no_urls=True, # replace all URLs with a special token
|
59 |
+
no_emails=True, # replace all email addresses with a special token
|
60 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
61 |
+
no_numbers=True, # replace all numbers with a special token
|
62 |
+
no_digits=False, # replace all digits with a special token
|
63 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
64 |
+
no_punct=True, # fully remove punctuation
|
65 |
+
replace_with_url="<URL>",
|
66 |
+
replace_with_email="<EMAIL>",
|
67 |
+
replace_with_phone_number="<PHONE>",
|
68 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
69 |
+
replace_with_digit="0",
|
70 |
+
replace_with_currency_symbol="<CUR>",
|
71 |
+
lang="en"
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
class MultiHeadModel(BertPreTrainedModel):
|
77 |
+
"""Pre-trained BERT model that uses our loss functions"""
|
78 |
+
|
79 |
+
def __init__(self, config, head2size):
|
80 |
+
super(MultiHeadModel, self).__init__(config, head2size)
|
81 |
+
config.num_labels = 1
|
82 |
+
self.bert = BertModel(config)
|
83 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
84 |
+
module_dict = {}
|
85 |
+
for head_name, num_labels in head2size.items():
|
86 |
+
module_dict[head_name] = nn.Linear(config.hidden_size, num_labels)
|
87 |
+
self.heads = nn.ModuleDict(module_dict)
|
88 |
+
|
89 |
+
self.init_weights()
|
90 |
+
|
91 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None,
|
92 |
+
head2labels=None, return_pooler_output=False, head2mask=None,
|
93 |
+
nsp_loss_weights=None):
|
94 |
+
|
95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
+
|
97 |
+
# Get logits
|
98 |
+
output = self.bert(
|
99 |
+
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
|
100 |
+
output_attentions=False, output_hidden_states=False, return_dict=True)
|
101 |
+
pooled_output = self.dropout(output["pooler_output"]).to(device)
|
102 |
+
|
103 |
+
head2logits = {}
|
104 |
+
return_dict = {}
|
105 |
+
for head_name, head in self.heads.items():
|
106 |
+
head2logits[head_name] = self.heads[head_name](pooled_output)
|
107 |
+
head2logits[head_name] = head2logits[head_name].float()
|
108 |
+
return_dict[head_name + "_logits"] = head2logits[head_name]
|
109 |
+
|
110 |
+
|
111 |
+
if head2labels is not None:
|
112 |
+
for head_name, labels in head2labels.items():
|
113 |
+
num_classes = head2logits[head_name].shape[1]
|
114 |
+
|
115 |
+
# Regression (e.g. for politeness)
|
116 |
+
if num_classes == 1:
|
117 |
+
|
118 |
+
# Only consider positive examples
|
119 |
+
if head2mask is not None and head_name in head2mask:
|
120 |
+
num_positives = head2labels[head2mask[head_name]].sum() # use certain labels as mask
|
121 |
+
if num_positives == 0:
|
122 |
+
return_dict[head_name + "_loss"] = torch.tensor([0]).to(device)
|
123 |
+
else:
|
124 |
+
loss_fct = MSELoss(reduction='none')
|
125 |
+
loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
126 |
+
return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives
|
127 |
+
else:
|
128 |
+
loss_fct = MSELoss()
|
129 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
130 |
+
else:
|
131 |
+
loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float())
|
132 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1))
|
133 |
+
|
134 |
+
|
135 |
+
if return_pooler_output:
|
136 |
+
return_dict["pooler_output"] = output["pooler_output"]
|
137 |
+
|
138 |
+
return return_dict
|
139 |
+
|
140 |
+
class InputBuilder(object):
|
141 |
+
"""Base class for building inputs from segments."""
|
142 |
+
|
143 |
+
def __init__(self, tokenizer):
|
144 |
+
self.tokenizer = tokenizer
|
145 |
+
self.mask = [tokenizer.mask_token_id]
|
146 |
+
|
147 |
+
def build_inputs(self, history, reply, max_length):
|
148 |
+
raise NotImplementedError
|
149 |
+
|
150 |
+
def mask_seq(self, sequence, seq_id):
|
151 |
+
sequence[seq_id] = self.mask
|
152 |
+
return sequence
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def _combine_sequence(self, history, reply, max_length, flipped=False):
|
156 |
+
# Trim all inputs to max_length
|
157 |
+
history = [s[:max_length] for s in history]
|
158 |
+
reply = reply[:max_length]
|
159 |
+
if flipped:
|
160 |
+
return [reply] + history
|
161 |
+
return history + [reply]
|
162 |
+
|
163 |
+
|
164 |
+
class BertInputBuilder(InputBuilder):
|
165 |
+
"""Processor for BERT inputs"""
|
166 |
+
|
167 |
+
def __init__(self, tokenizer):
|
168 |
+
InputBuilder.__init__(self, tokenizer)
|
169 |
+
self.cls = [tokenizer.cls_token_id]
|
170 |
+
self.sep = [tokenizer.sep_token_id]
|
171 |
+
self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"]
|
172 |
+
self.padded_inputs = ["input_ids", "token_type_ids"]
|
173 |
+
self.flipped = False
|
174 |
+
|
175 |
+
|
176 |
+
def build_inputs(self, history, reply, max_length, input_str=True):
|
177 |
+
"""See base class."""
|
178 |
+
if input_str:
|
179 |
+
history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history]
|
180 |
+
reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply))
|
181 |
+
sequence = self._combine_sequence(history, reply, max_length, self.flipped)
|
182 |
+
sequence = [s + self.sep for s in sequence]
|
183 |
+
sequence[0] = self.cls + sequence[0]
|
184 |
+
|
185 |
+
instance = {}
|
186 |
+
instance["input_ids"] = list(chain(*sequence))
|
187 |
+
last_speaker = 0
|
188 |
+
other_speaker = 1
|
189 |
+
seq_length = len(sequence)
|
190 |
+
instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker
|
191 |
+
for i, s in enumerate(sequence) for _ in s]
|
192 |
+
return instance
|