internlm-xcomposer-7b-4bit / modeling_InternLM.py
stanrom's picture
Duplicate from internlm/internlm-xcomposer-7b-4bit
7eca9f4 verified
import math
from typing import List, Union
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_InternLM_XComposer import InternLMXComposerConfig
from .modeling_utils import LoRALinear
try:
import rotary_emb
except Exception as e:
print('Please following docs/install.md to install rotary_emb if you want to do fine-tuning')
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "InternLMXComposerConfig"
def rotary_embed(x1, x2, cos, sin, conj):
x1, x2 = x1.float(), x2.float()
if conj:
x1, x2 = x1 * cos + x2 * sin, x1 * sin + x2 * cos
else:
x1, x2 = x1 * cos - x2 * sin, x1 * sin + x2 * cos
return x1, x2
class LegacyApplyRotaryEmbQKV_(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False):
"""
qkv: (batch_size, seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
batch, seqlen, three, nheads, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen,
rotary_dim // 2)
q_ro = qkv[:, :, 0, :, :rotary_dim]
q1, q2 = q_ro.chunk(2, dim=-1) if not interleaved else (q_ro[..., ::2],
q_ro[...,
1::2])
# rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
# rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False)
q1, q2 = rotary_embed(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), False)
qkv[:, :, 0, :, :rotary_dim] = torch.cat([q1, q2], dim=-1)
k_ro = qkv[:, :, 1, :, :rotary_dim]
k1, k2 = k_ro.chunk(2, dim=-1) if not interleaved else (k_ro[..., ::2],
k_ro[...,
1::2])
# rotary_emb.apply_rotary(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
# rearrange(sin_k[:seqlen], 's d -> s 1 d'), k1, k2, False)
k1, k2 = rotary_embed(k1, k2, rearrange(cos_k[:seqlen],
's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), False)
qkv[:, :, 1, :, :rotary_dim] = torch.cat([k1, k2], dim=-1)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
ctx.interleaved = interleaved
return qkv
@staticmethod
def backward(ctx, dqkv):
cos, sin, cos_k, sin_k = ctx.saved_tensors
_, seqlen, _, _, headdim = dqkv.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq_ro = dqkv[:, :, 0, :, :rotary_dim]
dq1, dq2 = (dq_ro.chunk(2, dim=-1) if not ctx.interleaved else
(dq_ro[..., ::2], dq_ro[..., 1::2]))
rotary_emb.apply_rotary(dq1, dq2,
rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dq1,
dq2, True)
dk_ro = dqkv[:, :, 1, :, :rotary_dim]
dk1, dk2 = (dk_ro.chunk(2, dim=-1) if not ctx.interleaved else
(dk_ro[..., ::2], dk_ro[..., 1::2]))
rotary_emb.apply_rotary(dk1, dk2,
rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1,
dk2, True)
return dqkv, None, None, None, None, None
class ApplyRotaryEmbQKV_(torch.autograd.Function):
"""
ApplyRotaryEmbQKV_
"""
@staticmethod
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None):
"""
qkv: (total, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
_, three, _, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen,
rotary_dim // 2)
q1, q2 = qkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(q1, q2, rearrange(cos, "s d -> s 1 d"),
rearrange(sin, "s d -> s 1 d"), q1, q2, False)
k1, k2 = qkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k, "s d -> s 1 d"),
rearrange(sin_k, "s d -> s 1 d"), k1, k2,
False)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
return qkv
@staticmethod
def backward(ctx, dqkv):
cos, sin, cos_k, sin_k = ctx.saved_tensors
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq1, dq2 = dqkv[:, 0, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos, "s d -> s 1 d"),
rearrange(sin, "s d -> s 1 d"), dq1, dq2, True)
dk1, dk2 = dqkv[:, 1, :, :rotary_dim].chunk(2, dim=-1)
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k, "s d -> s 1 d"),
rearrange(sin_k, "s d -> s 1 d"), dk1, dk2,
True)
return dqkv, None, None, None, None
class ConvertedInternLMRotaryEmbedding(torch.nn.Module):
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
""" """
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (base**(
torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq)
self.scale_base = scale_base
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) +
0.4 * dim) / (1.4 * dim) if scale_base > 0 else None)
self.register_buffer("scale", scale)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
def _update_cos_sin_cache(self, x, indexes):
"""x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim)"""
if not isinstance(indexes, int):
seqlen = indexes.max().item() + 1
else:
seqlen = indexes + 1 # eval_forward
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
self._seq_len_cached = seqlen
t = torch.arange(seqlen,
device=x.device,
dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(x.dtype)
self._sin_cached = torch.sin(freqs).to(x.dtype)
else:
power = (torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device) -
seqlen // 2) / self.scale_base
scale = self.scale.to(device=power.device)**rearrange(
power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
def forward(self,
qkv: torch.Tensor,
indexes=0) -> Tuple[torch.Tensor, torch.Tensor]:
self._update_cos_sin_cache(qkv, indexes)
if self.scale is None:
return apply_rotary_emb_qkv_(qkv, self._cos_cached[indexes],
self._sin_cached[indexes]).to(
qkv.dtype)
else:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached[indexes],
self._sin_cached[indexes],
self._cos_k_cached[indexes],
self._sin_k_cached[indexes],
).to(qkv.dtype)
def eval_forward(self, qkv, seqlen_offset=0):
"""
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(qkv, seqlen_offset + qkv.shape[1])
if self.scale is None:
return legacy_apply_rotary_embed_qkv(
qkv, self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:])
else:
return legacy_apply_rotary_embed_qkv(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
self._cos_k_cached[seqlen_offset:],
self._sin_k_cached[seqlen_offset:],
)
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply
class InternConvertedInternLMAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternLMXComposerConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads}).")
if config.lora_cfg is None:
self.q_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.k_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.v_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
self.hidden_size,
bias=config.kqvo_bias)
else:
lora_cfg = config.lora_cfg
if 'q' in lora_cfg['learn_param']:
self.q_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
**lora_cfg)
else:
self.q_proj = nn.Linear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
)
if 'k' in lora_cfg['learn_param']:
self.k_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
**lora_cfg)
else:
self.k_proj = nn.Linear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
)
if 'v' in lora_cfg['learn_param']:
self.v_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
**lora_cfg)
else:
self.v_proj = nn.Linear(
self.hidden_size,
self.num_heads * self.head_dim,
bias=config.kqvo_bias,
)
if 'o' in lora_cfg['learn_param']:
self.o_proj = LoRALinear(self.num_heads * self.head_dim,
self.hidden_size,
bias=config.kqvo_bias,
**lora_cfg)
else:
self.o_proj = nn.Linear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=config.kqvo_bias,
)
self.rotary_emb = ConvertedInternLMRotaryEmbedding(self.head_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
q = query_states
k = key_states
v = value_states
qkv = torch.cat([q, k, v], dim=2).contiguous()
qkv = qkv.view(bsz, q_len, -1)
qkv = rearrange(qkv,
"b s (three h d) -> b s three h d",
three=3,
d=self.head_dim)
if past_key_value is not None:
qkv = self.rotary_emb.eval_forward(
qkv, seqlen_offset=past_key_value[0].shape[2])
else:
qkv = self.rotary_emb.eval_forward(qkv)
query_states, key_states, value_states = qkv.unbind(2)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}")
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class ConvertedLoRALinear(nn.Linear):
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
lora_r=8,
lora_alpha=16,
lora_dropout=0.05,
**kwargs) -> None:
super().__init__(in_features, out_features, bias, device, dtype)
self.lora_r = lora_r
self.lora_alpha = lora_alpha
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
self.lora_scaling = self.lora_alpha / self.lora_r
self.lora_A = nn.Linear(in_features,
self.lora_r,
bias=False,
device=device,
dtype=dtype)
self.lora_B = nn.Linear(self.lora_r,
out_features,
bias=False,
device=device,
dtype=dtype)
self.reset_parameters()
def reset_parameters(self):
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_B.weight)
# print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
def forward(self, x):
orig_type = x.dtype
res = super().forward(x)
dim = int(res.shape[-1] // 2)
r1 = res[..., :dim]
r2 = res[..., dim:]
r1 = r1.float()
r2 = r2.float()
x_ = x.float()
tmp = self.lora_B(self.lora_A(
self.lora_dropout(x_))) * self.lora_scaling
tmp1 = tmp[..., ::2]
tmp2 = tmp[..., 1::2]
r1 += tmp1
r2 += tmp2
r1 = r1.to(orig_type)
r2 = r2.to(orig_type)
res = torch.cat([r1, r2], -1)
# res += self.lora_B(self.lora_A(
# self.lora_dropout(x))) * self.lora_scaling
return res
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len),
torch.tensor(torch.finfo(dtype).min, device=device),
device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device),
mask
],
dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor,
dtype: torch.dtype,
tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool),
torch.finfo(dtype).min)
class InternLMRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
InternLMRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance +
self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class InternLMRotaryEmbedding(torch.nn.Module):
def __init__(self,
dim,
max_position_embeddings=2048,
base=10000,
device=None):
super().__init__()
inv_freq = 1.0 / (base
**(torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
# Build here to make `torch.jit.trace` work.
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached,
device=self.inv_freq.device,
dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached",
emb.cos()[None, None, :, :],
persistent=False)
self.register_buffer("sin_cached",
emb.sin()[None, None, :, :],
persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached,
device=x.device,
dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer("cos_cached",
emb.cos()[None, None, :, :],
persistent=False)
self.register_buffer("sin_cached",
emb.sin()[None, None, :, :],
persistent=False)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2,
gather_indices)
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2,
gather_indices)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class InternLMMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int,
hidden_act: str, config: InternLMXComposerConfig):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
if config.lora_cfg is not None and 'ffn' in config.lora_cfg[
'learn_param']:
lora_cfg = config.lora_cfg
self.down_proj = LoRALinear(intermediate_size,
hidden_size,
bias=False,
**lora_cfg)
self.up_proj = LoRALinear(hidden_size,
intermediate_size,
bias=False,
**lora_cfg)
else:
self.down_proj = nn.Linear(intermediate_size,
hidden_size,
bias=False)
self.up_proj = nn.Linear(hidden_size,
intermediate_size,
bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class InternLMAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternLMXComposerConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads}).")
if config.lora_cfg is None:
self.q_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
self.k_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
self.v_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
self.hidden_size,
bias=False)
else:
lora_cfg = config.lora_cfg
if 'q' in lora_cfg['learn_param']:
self.q_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False,
**lora_cfg)
else:
self.q_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
if 'k' in lora_cfg['learn_param']:
self.k_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False,
**lora_cfg)
else:
self.k_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
if 'v' in lora_cfg['learn_param']:
self.v_proj = LoRALinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False,
**lora_cfg)
else:
self.v_proj = nn.Linear(self.hidden_size,
self.num_heads * self.head_dim,
bias=False)
if 'o' in lora_cfg['learn_param']:
self.o_proj = LoRALinear(self.num_heads * self.head_dim,
self.hidden_size,
bias=False,
**lora_cfg)
else:
self.o_proj = nn.Linear(self.num_heads * self.head_dim,
self.hidden_size,
bias=False)
self.rotary_emb = InternLMRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads,
self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}")
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights,
torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}")
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class InternLMDecoderLayer(nn.Module):
def __init__(self, config: InternLMXComposerConfig):
super().__init__()
self.hidden_size = config.hidden_size
if hasattr(config,
'intern_converted_llm') and config.intern_converted_llm:
self.self_attn = InternConvertedInternLMAttention(config=config)
else:
self.self_attn = InternLMAttention(config=config)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
config=config,
)
self.input_layernorm = InternLMRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = InternLMRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, )
if output_attentions:
outputs += (self_attn_weights, )
if use_cache:
outputs += (present_key_value, )
return outputs
class InternLMPreTrainedModel(PreTrainedModel):
config_class = InternLMXComposerConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["InternLMDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLMModel):
module.gradient_checkpointing = value
class InternLMModel(InternLMPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
Args:
config: InternLMXComposerConfig
"""
def __init__(self, config: InternLMXComposerConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
self.padding_idx)
self.layers = nn.ModuleList([
InternLMDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.norm = InternLMRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1]).to(
inputs_embeds.device)
combined_attention_mask = (expanded_attn_mask
if combined_attention_mask is None else
expanded_attn_mask +
combined_attention_mask)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if query_embeds is not None:
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
batch_size, seq_length, _ = inputs_embeds.shape
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# embed positions
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds,
past_key_values_length)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states, )
past_key_value = past_key_values[
idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (
layer_outputs[2 if output_attentions else 1], )
if output_attentions:
all_self_attns += (layer_outputs[1], )
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states, )
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in
[hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class InternLMForCausalLM(InternLMPreTrainedModel):
lora_cfg = None # init in MiniGPT4
def __init__(self, config):
super().__init__(config)
# TODO: find a way to explicitly initialize InternLM
setattr(config, 'lora_cfg', self.lora_cfg)
if hasattr(config, 'kqvo_bias'):
setattr(config, 'kqvo_bias', config.kqvo_bias)
else:
setattr(config, 'kqvo_bias', False)
self.model = InternLMModel(config)
self.lm_head = nn.Linear(config.hidden_size,
config.vocab_size,
bias=False)
if hasattr(config, 'ex_size'):
self.ex_size = config.ex_size
else:
self.ex_size = 0
if hasattr(config, 'sp_id'):
self.sp_id = config.sp_id
else:
self.sp_id = -1
# Initialize weights and apply final processing
self.post_init()
@classmethod
def from_pretrained(cls,
pretrained_model_name_or_path,
llm_cfg=None,
*model_args,
**kwargs):
if llm_cfg:
if 'torch_dtype' in kwargs:
llm_cfg.torch_dtype = kwargs['torch_dtype']
if 'load_in_8bit' in kwargs:
llm_cfg.load_in_8bit = kwargs['load_in_8bit']
if 'device_map' in kwargs:
llm_cfg.device_map = kwargs['device_map']
return cls._from_config(llm_cfg)
else:
return super().from_pretrained(pretrained_model_name_or_path,
*model_args, **kwargs)
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
query_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, InternLMForCausalLM
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
query_embeds=query_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduce=False)
loss_reduce = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
###
if self.sp_id >= 0:
ori_mask = (shift_labels != self.sp_id).float()
ori_mask = ori_mask * (shift_labels >= 0).float()
local_mask = (shift_labels == self.sp_id).float()
else:
ori_mask = (shift_labels <
self.config.vocab_size - self.ex_size).float()
ori_mask = ori_mask * (shift_labels >= 0).float()
local_mask = (shift_labels >=
self.config.vocab_size - self.ex_size).float()
# Enable model parallelism
loss = loss_reduce(shift_logits, shift_labels)
loss_all = loss_fct(shift_logits, shift_labels)
loss_o = (loss_all * ori_mask).sum() / ori_mask.sum()
if torch.sum(local_mask) == 0:
loss_l = loss_o * 0
else:
loss_l = (loss_all * local_mask).sum() / local_mask.sum()
if not return_dict:
output = (logits, ) + outputs[1:]
return (loss, ) + output if loss is not None else output
if (self.ex_size > 0 or self.sp_id >= 0) and labels is not None:
return loss, loss_o, loss_l
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
query_embeds=None,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
query_embeds = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update({
"position_ids": position_ids,
"query_embeds": query_embeds,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
})
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past), )
return reordered_past