from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class InternLMXComposerConfig(PretrainedConfig): model_type = "InternLMXComposer" _auto_class = "AutoConfig" def __init__( self, vocab_size=103168, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=-1, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, bias=True, num_query_token=32, num_quant=32, intern_converted_llm=True, kqvo_bias=True, device='cuda:0', # device='cpu', internlm_lora=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.bias = bias self.num_query_token = num_query_token self.num_quant = num_quant self.internlm_lora = internlm_lora self.kqvo_bias = kqvo_bias self.intern_converted_llm = intern_converted_llm self.device = device super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )