Updated model card to reflect changes to model.
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ the case with the baseline.
|
|
17 |
|
18 |
The architecture of this LoRA model follows that of the LLaMA-7b Alpaca-LoRA with the hyper-parameters:
|
19 |
```
|
20 |
-
LORA_R =
|
21 |
LORA_ALPHA = 16
|
22 |
LORA_DROPOUT= 0.05
|
23 |
LORA_TARGET_MODULES = [
|
@@ -28,8 +28,24 @@ LORA_TARGET_MODULES = [
|
|
28 |
]
|
29 |
```
|
30 |
The model was trained using PEFT for up to 3 epochs, with <code>load_best_model_at_end=True</code> set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
It can be recombined with the baseline model to generate text:
|
33 |
```
|
34 |
BASE_MODEL = "openlm-research/open_llama_7b_700bt_preview"
|
35 |
|
@@ -39,7 +55,6 @@ bmodel = LlamaForCausalLM.from_pretrained(
|
|
39 |
device_map="sequential"
|
40 |
)
|
41 |
|
42 |
-
|
43 |
peft_model_id = "starfishmedical/SFDocumentOracle-open_llama_7b_lora"
|
44 |
tokenizer = LlamaTokenizer.from_pretrained(peft_model_id)
|
45 |
|
|
|
17 |
|
18 |
The architecture of this LoRA model follows that of the LLaMA-7b Alpaca-LoRA with the hyper-parameters:
|
19 |
```
|
20 |
+
LORA_R = 8
|
21 |
LORA_ALPHA = 16
|
22 |
LORA_DROPOUT= 0.05
|
23 |
LORA_TARGET_MODULES = [
|
|
|
28 |
]
|
29 |
```
|
30 |
The model was trained using PEFT for up to 3 epochs, with <code>load_best_model_at_end=True</code> set.
|
31 |
+
The learning rate was set to 5e-5, so the minimal validation loss occurred very near to the end of training.
|
32 |
+
|
33 |
+
Both the combined model and adapter weights are available.
|
34 |
+
|
35 |
+
The combined model can be loaded and used right out of the box:
|
36 |
+
```
|
37 |
+
BASE_MODEL = "StarFish-DocOracle"
|
38 |
+
|
39 |
+
model = LlamaForCausalLM.from_pretrained(
|
40 |
+
BASE_MODEL,
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
device_map="sequential"
|
43 |
+
)
|
44 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
45 |
+
```
|
46 |
+
|
47 |
+
The adapter can be recombined with the baseline model to generate text:
|
48 |
|
|
|
49 |
```
|
50 |
BASE_MODEL = "openlm-research/open_llama_7b_700bt_preview"
|
51 |
|
|
|
55 |
device_map="sequential"
|
56 |
)
|
57 |
|
|
|
58 |
peft_model_id = "starfishmedical/SFDocumentOracle-open_llama_7b_lora"
|
59 |
tokenizer = LlamaTokenizer.from_pretrained(peft_model_id)
|
60 |
|