stefan-it's picture
Upload ./training.log with huggingface_hub
b428604
2023-10-18 23:22:09,534 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,535 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=81, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-18 23:22:09,535 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Train: 6900 sentences
2023-10-18 23:22:09,536 (train_with_dev=False, train_with_test=False)
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Training Params:
2023-10-18 23:22:09,536 - learning_rate: "3e-05"
2023-10-18 23:22:09,536 - mini_batch_size: "16"
2023-10-18 23:22:09,536 - max_epochs: "10"
2023-10-18 23:22:09,536 - shuffle: "True"
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,536 Plugins:
2023-10-18 23:22:09,536 - TensorboardLogger
2023-10-18 23:22:09,536 - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 23:22:09,536 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 23:22:09,537 - metric: "('micro avg', 'f1-score')"
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Computation:
2023-10-18 23:22:09,537 - compute on device: cuda:0
2023-10-18 23:22:09,537 - embedding storage: none
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-1"
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:22:09,537 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 23:22:23,535 epoch 1 - iter 43/432 - loss 4.75760576 - time (sec): 14.00 - samples/sec: 432.61 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:22:37,284 epoch 1 - iter 86/432 - loss 3.79168637 - time (sec): 27.75 - samples/sec: 437.08 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:22:51,418 epoch 1 - iter 129/432 - loss 3.15291761 - time (sec): 41.88 - samples/sec: 438.07 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:23:04,784 epoch 1 - iter 172/432 - loss 2.77724614 - time (sec): 55.25 - samples/sec: 443.10 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:23:19,237 epoch 1 - iter 215/432 - loss 2.50566279 - time (sec): 69.70 - samples/sec: 436.43 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:23:32,744 epoch 1 - iter 258/432 - loss 2.27969539 - time (sec): 83.20 - samples/sec: 440.95 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:23:46,386 epoch 1 - iter 301/432 - loss 2.08743805 - time (sec): 96.85 - samples/sec: 445.69 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:24:00,733 epoch 1 - iter 344/432 - loss 1.94157999 - time (sec): 111.19 - samples/sec: 442.51 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:24:14,915 epoch 1 - iter 387/432 - loss 1.81951311 - time (sec): 125.38 - samples/sec: 439.73 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:24:29,890 epoch 1 - iter 430/432 - loss 1.70026851 - time (sec): 140.35 - samples/sec: 439.60 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:24:30,425 ----------------------------------------------------------------------------------------------------
2023-10-18 23:24:30,425 EPOCH 1 done: loss 1.6981 - lr: 0.000030
2023-10-18 23:24:43,545 DEV : loss 0.5471832156181335 - f1-score (micro avg) 0.667
2023-10-18 23:24:43,569 saving best model
2023-10-18 23:24:44,053 ----------------------------------------------------------------------------------------------------
2023-10-18 23:24:58,280 epoch 2 - iter 43/432 - loss 0.61594785 - time (sec): 14.23 - samples/sec: 447.65 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:25:11,929 epoch 2 - iter 86/432 - loss 0.58438105 - time (sec): 27.87 - samples/sec: 445.89 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:25,850 epoch 2 - iter 129/432 - loss 0.57439156 - time (sec): 41.80 - samples/sec: 439.74 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:40,059 epoch 2 - iter 172/432 - loss 0.54614426 - time (sec): 56.00 - samples/sec: 441.70 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:25:55,802 epoch 2 - iter 215/432 - loss 0.52793380 - time (sec): 71.75 - samples/sec: 432.46 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:10,341 epoch 2 - iter 258/432 - loss 0.51499945 - time (sec): 86.29 - samples/sec: 434.31 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:25,316 epoch 2 - iter 301/432 - loss 0.49807920 - time (sec): 101.26 - samples/sec: 432.03 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:26:40,222 epoch 2 - iter 344/432 - loss 0.48644736 - time (sec): 116.17 - samples/sec: 427.66 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:26:55,249 epoch 2 - iter 387/432 - loss 0.47199609 - time (sec): 131.19 - samples/sec: 424.24 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:27:11,118 epoch 2 - iter 430/432 - loss 0.46618631 - time (sec): 147.06 - samples/sec: 419.72 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:27:11,659 ----------------------------------------------------------------------------------------------------
2023-10-18 23:27:11,660 EPOCH 2 done: loss 0.4659 - lr: 0.000027
2023-10-18 23:27:24,698 DEV : loss 0.3461967706680298 - f1-score (micro avg) 0.7729
2023-10-18 23:27:24,722 saving best model
2023-10-18 23:27:26,021 ----------------------------------------------------------------------------------------------------
2023-10-18 23:27:40,354 epoch 3 - iter 43/432 - loss 0.31214822 - time (sec): 14.33 - samples/sec: 426.90 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:27:54,896 epoch 3 - iter 86/432 - loss 0.31299760 - time (sec): 28.87 - samples/sec: 421.26 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:28:09,898 epoch 3 - iter 129/432 - loss 0.30484547 - time (sec): 43.87 - samples/sec: 413.81 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:28:24,971 epoch 3 - iter 172/432 - loss 0.29888479 - time (sec): 58.95 - samples/sec: 412.70 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:28:40,149 epoch 3 - iter 215/432 - loss 0.30051912 - time (sec): 74.13 - samples/sec: 411.07 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:28:54,889 epoch 3 - iter 258/432 - loss 0.30047825 - time (sec): 88.87 - samples/sec: 416.03 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:29:09,664 epoch 3 - iter 301/432 - loss 0.29923078 - time (sec): 103.64 - samples/sec: 415.85 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:23,721 epoch 3 - iter 344/432 - loss 0.29751234 - time (sec): 117.70 - samples/sec: 420.53 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:38,262 epoch 3 - iter 387/432 - loss 0.29353934 - time (sec): 132.24 - samples/sec: 421.84 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:29:52,819 epoch 3 - iter 430/432 - loss 0.29071211 - time (sec): 146.80 - samples/sec: 420.39 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:29:53,454 ----------------------------------------------------------------------------------------------------
2023-10-18 23:29:53,455 EPOCH 3 done: loss 0.2903 - lr: 0.000023
2023-10-18 23:30:06,931 DEV : loss 0.30047762393951416 - f1-score (micro avg) 0.8112
2023-10-18 23:30:06,955 saving best model
2023-10-18 23:30:08,235 ----------------------------------------------------------------------------------------------------
2023-10-18 23:30:21,918 epoch 4 - iter 43/432 - loss 0.21553125 - time (sec): 13.68 - samples/sec: 480.79 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:30:37,085 epoch 4 - iter 86/432 - loss 0.22053010 - time (sec): 28.85 - samples/sec: 442.52 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:30:51,506 epoch 4 - iter 129/432 - loss 0.21910439 - time (sec): 43.27 - samples/sec: 440.91 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:05,246 epoch 4 - iter 172/432 - loss 0.21474027 - time (sec): 57.01 - samples/sec: 440.47 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:20,509 epoch 4 - iter 215/432 - loss 0.21802691 - time (sec): 72.27 - samples/sec: 437.99 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:31:35,462 epoch 4 - iter 258/432 - loss 0.21679757 - time (sec): 87.23 - samples/sec: 436.00 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:31:50,145 epoch 4 - iter 301/432 - loss 0.21374962 - time (sec): 101.91 - samples/sec: 432.60 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:32:04,748 epoch 4 - iter 344/432 - loss 0.20945206 - time (sec): 116.51 - samples/sec: 425.91 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:32:19,960 epoch 4 - iter 387/432 - loss 0.20989087 - time (sec): 131.72 - samples/sec: 423.09 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:32:35,115 epoch 4 - iter 430/432 - loss 0.20942007 - time (sec): 146.88 - samples/sec: 419.77 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:32:35,716 ----------------------------------------------------------------------------------------------------
2023-10-18 23:32:35,717 EPOCH 4 done: loss 0.2089 - lr: 0.000020
2023-10-18 23:32:48,612 DEV : loss 0.305877149105072 - f1-score (micro avg) 0.8234
2023-10-18 23:32:48,636 saving best model
2023-10-18 23:32:49,920 ----------------------------------------------------------------------------------------------------
2023-10-18 23:33:03,649 epoch 5 - iter 43/432 - loss 0.16781001 - time (sec): 13.73 - samples/sec: 423.90 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:33:18,972 epoch 5 - iter 86/432 - loss 0.16626377 - time (sec): 29.05 - samples/sec: 408.16 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:33:34,071 epoch 5 - iter 129/432 - loss 0.16260592 - time (sec): 44.15 - samples/sec: 402.67 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:33:48,740 epoch 5 - iter 172/432 - loss 0.15898066 - time (sec): 58.82 - samples/sec: 408.49 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:34:02,726 epoch 5 - iter 215/432 - loss 0.16434122 - time (sec): 72.80 - samples/sec: 411.18 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:17,574 epoch 5 - iter 258/432 - loss 0.16206014 - time (sec): 87.65 - samples/sec: 411.29 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:32,583 epoch 5 - iter 301/432 - loss 0.16111024 - time (sec): 102.66 - samples/sec: 415.20 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:34:45,435 epoch 5 - iter 344/432 - loss 0.15932449 - time (sec): 115.51 - samples/sec: 425.07 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:00,356 epoch 5 - iter 387/432 - loss 0.15868495 - time (sec): 130.44 - samples/sec: 424.17 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:15,913 epoch 5 - iter 430/432 - loss 0.16100694 - time (sec): 145.99 - samples/sec: 422.70 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:35:16,398 ----------------------------------------------------------------------------------------------------
2023-10-18 23:35:16,398 EPOCH 5 done: loss 0.1609 - lr: 0.000017
2023-10-18 23:35:29,484 DEV : loss 0.3180467188358307 - f1-score (micro avg) 0.8266
2023-10-18 23:35:29,508 saving best model
2023-10-18 23:35:31,528 ----------------------------------------------------------------------------------------------------
2023-10-18 23:35:46,762 epoch 6 - iter 43/432 - loss 0.12139549 - time (sec): 15.23 - samples/sec: 407.36 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:00,910 epoch 6 - iter 86/432 - loss 0.11575687 - time (sec): 29.38 - samples/sec: 437.71 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:15,240 epoch 6 - iter 129/432 - loss 0.12824583 - time (sec): 43.71 - samples/sec: 430.95 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:36:30,980 epoch 6 - iter 172/432 - loss 0.12638379 - time (sec): 59.45 - samples/sec: 423.77 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:36:45,226 epoch 6 - iter 215/432 - loss 0.12726516 - time (sec): 73.70 - samples/sec: 418.04 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:36:59,489 epoch 6 - iter 258/432 - loss 0.12675820 - time (sec): 87.96 - samples/sec: 420.41 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:37:13,934 epoch 6 - iter 301/432 - loss 0.12721952 - time (sec): 102.40 - samples/sec: 422.27 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:28,404 epoch 6 - iter 344/432 - loss 0.12580091 - time (sec): 116.87 - samples/sec: 423.39 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:43,360 epoch 6 - iter 387/432 - loss 0.12657720 - time (sec): 131.83 - samples/sec: 420.95 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:37:59,227 epoch 6 - iter 430/432 - loss 0.12513388 - time (sec): 147.70 - samples/sec: 417.76 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:37:59,751 ----------------------------------------------------------------------------------------------------
2023-10-18 23:37:59,752 EPOCH 6 done: loss 0.1251 - lr: 0.000013
2023-10-18 23:38:12,663 DEV : loss 0.3315909206867218 - f1-score (micro avg) 0.8341
2023-10-18 23:38:12,687 saving best model
2023-10-18 23:38:14,325 ----------------------------------------------------------------------------------------------------
2023-10-18 23:38:29,359 epoch 7 - iter 43/432 - loss 0.10710781 - time (sec): 15.03 - samples/sec: 394.00 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:38:44,447 epoch 7 - iter 86/432 - loss 0.10505496 - time (sec): 30.12 - samples/sec: 392.29 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:38:58,461 epoch 7 - iter 129/432 - loss 0.10484843 - time (sec): 44.14 - samples/sec: 414.75 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:12,787 epoch 7 - iter 172/432 - loss 0.10096346 - time (sec): 58.46 - samples/sec: 427.77 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:27,646 epoch 7 - iter 215/432 - loss 0.10332899 - time (sec): 73.32 - samples/sec: 422.47 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:39:41,653 epoch 7 - iter 258/432 - loss 0.10374389 - time (sec): 87.33 - samples/sec: 426.79 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:39:56,082 epoch 7 - iter 301/432 - loss 0.10457902 - time (sec): 101.76 - samples/sec: 427.53 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:40:10,410 epoch 7 - iter 344/432 - loss 0.10312114 - time (sec): 116.08 - samples/sec: 427.08 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:40:24,795 epoch 7 - iter 387/432 - loss 0.10178810 - time (sec): 130.47 - samples/sec: 424.05 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:40:38,988 epoch 7 - iter 430/432 - loss 0.10028660 - time (sec): 144.66 - samples/sec: 425.77 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:40:39,561 ----------------------------------------------------------------------------------------------------
2023-10-18 23:40:39,561 EPOCH 7 done: loss 0.1006 - lr: 0.000010
2023-10-18 23:40:52,891 DEV : loss 0.3369572162628174 - f1-score (micro avg) 0.8346
2023-10-18 23:40:52,915 saving best model
2023-10-18 23:40:54,216 ----------------------------------------------------------------------------------------------------
2023-10-18 23:41:08,861 epoch 8 - iter 43/432 - loss 0.07187557 - time (sec): 14.64 - samples/sec: 425.38 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:41:22,173 epoch 8 - iter 86/432 - loss 0.07672505 - time (sec): 27.96 - samples/sec: 444.34 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:41:37,793 epoch 8 - iter 129/432 - loss 0.07576497 - time (sec): 43.58 - samples/sec: 422.76 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:41:52,650 epoch 8 - iter 172/432 - loss 0.07916836 - time (sec): 58.43 - samples/sec: 415.35 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:42:06,898 epoch 8 - iter 215/432 - loss 0.08050354 - time (sec): 72.68 - samples/sec: 417.26 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:21,388 epoch 8 - iter 258/432 - loss 0.07912664 - time (sec): 87.17 - samples/sec: 419.35 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:36,467 epoch 8 - iter 301/432 - loss 0.07933223 - time (sec): 102.25 - samples/sec: 417.28 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:42:51,389 epoch 8 - iter 344/432 - loss 0.08115197 - time (sec): 117.17 - samples/sec: 415.73 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:07,766 epoch 8 - iter 387/432 - loss 0.08121199 - time (sec): 133.55 - samples/sec: 411.15 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:22,779 epoch 8 - iter 430/432 - loss 0.08078528 - time (sec): 148.56 - samples/sec: 415.04 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:43:23,350 ----------------------------------------------------------------------------------------------------
2023-10-18 23:43:23,351 EPOCH 8 done: loss 0.0807 - lr: 0.000007
2023-10-18 23:43:36,626 DEV : loss 0.36578330397605896 - f1-score (micro avg) 0.8352
2023-10-18 23:43:36,651 saving best model
2023-10-18 23:43:37,939 ----------------------------------------------------------------------------------------------------
2023-10-18 23:43:51,874 epoch 9 - iter 43/432 - loss 0.06019569 - time (sec): 13.93 - samples/sec: 459.92 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:05,890 epoch 9 - iter 86/432 - loss 0.05939192 - time (sec): 27.95 - samples/sec: 441.92 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:21,211 epoch 9 - iter 129/432 - loss 0.06399840 - time (sec): 43.27 - samples/sec: 426.90 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:44:36,731 epoch 9 - iter 172/432 - loss 0.06426966 - time (sec): 58.79 - samples/sec: 421.31 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:44:51,226 epoch 9 - iter 215/432 - loss 0.06330203 - time (sec): 73.29 - samples/sec: 424.79 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:45:06,543 epoch 9 - iter 258/432 - loss 0.06371165 - time (sec): 88.60 - samples/sec: 420.93 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:45:21,139 epoch 9 - iter 301/432 - loss 0.06531644 - time (sec): 103.20 - samples/sec: 422.93 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:45:36,684 epoch 9 - iter 344/432 - loss 0.06594531 - time (sec): 118.74 - samples/sec: 416.32 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:45:51,785 epoch 9 - iter 387/432 - loss 0.06530243 - time (sec): 133.84 - samples/sec: 414.80 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:46:06,616 epoch 9 - iter 430/432 - loss 0.06528131 - time (sec): 148.67 - samples/sec: 414.55 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:46:07,145 ----------------------------------------------------------------------------------------------------
2023-10-18 23:46:07,145 EPOCH 9 done: loss 0.0652 - lr: 0.000003
2023-10-18 23:46:20,567 DEV : loss 0.36841511726379395 - f1-score (micro avg) 0.8392
2023-10-18 23:46:20,592 saving best model
2023-10-18 23:46:21,872 ----------------------------------------------------------------------------------------------------
2023-10-18 23:46:36,539 epoch 10 - iter 43/432 - loss 0.06456485 - time (sec): 14.67 - samples/sec: 408.84 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:46:50,973 epoch 10 - iter 86/432 - loss 0.05967601 - time (sec): 29.10 - samples/sec: 408.80 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:47:04,800 epoch 10 - iter 129/432 - loss 0.06175374 - time (sec): 42.93 - samples/sec: 426.06 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:19,977 epoch 10 - iter 172/432 - loss 0.06001026 - time (sec): 58.10 - samples/sec: 423.29 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:34,542 epoch 10 - iter 215/432 - loss 0.05644803 - time (sec): 72.67 - samples/sec: 424.43 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:47:50,093 epoch 10 - iter 258/432 - loss 0.05666523 - time (sec): 88.22 - samples/sec: 419.44 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:04,554 epoch 10 - iter 301/432 - loss 0.05586013 - time (sec): 102.68 - samples/sec: 418.50 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:20,545 epoch 10 - iter 344/432 - loss 0.05609200 - time (sec): 118.67 - samples/sec: 414.11 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:48:36,202 epoch 10 - iter 387/432 - loss 0.05754005 - time (sec): 134.33 - samples/sec: 412.96 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:48:51,086 epoch 10 - iter 430/432 - loss 0.05860056 - time (sec): 149.21 - samples/sec: 413.03 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:48:51,652 ----------------------------------------------------------------------------------------------------
2023-10-18 23:48:51,652 EPOCH 10 done: loss 0.0585 - lr: 0.000000
2023-10-18 23:49:05,067 DEV : loss 0.37858790159225464 - f1-score (micro avg) 0.8379
2023-10-18 23:49:05,601 ----------------------------------------------------------------------------------------------------
2023-10-18 23:49:05,602 Loading model from best epoch ...
2023-10-18 23:49:07,975 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-18 23:49:26,029
Results:
- F-score (micro) 0.7661
- F-score (macro) 0.5763
- Accuracy 0.6675
By class:
precision recall f1-score support
trigger 0.7225 0.6218 0.6684 833
location-stop 0.8467 0.8301 0.8383 765
location 0.8017 0.8451 0.8228 665
location-city 0.8006 0.8728 0.8352 566
date 0.8836 0.8477 0.8653 394
location-street 0.9465 0.8705 0.9069 386
time 0.7759 0.8789 0.8242 256
location-route 0.8653 0.7465 0.8015 284
organization-company 0.7600 0.6786 0.7170 252
distance 0.9940 1.0000 0.9970 167
number 0.6868 0.8389 0.7553 149
duration 0.3377 0.3190 0.3281 163
event-cause 0.0000 0.0000 0.0000 0
disaster-type 0.9259 0.3623 0.5208 69
organization 0.5000 0.5357 0.5172 28
person 0.4211 0.8000 0.5517 10
set 0.0000 0.0000 0.0000 0
org-position 0.0000 0.0000 0.0000 1
money 0.0000 0.0000 0.0000 0
micro avg 0.7550 0.7777 0.7661 4988
macro avg 0.5931 0.5815 0.5763 4988
weighted avg 0.8001 0.7777 0.7852 4988
2023-10-18 23:49:26,029 ----------------------------------------------------------------------------------------------------