File size: 25,497 Bytes
16cb29c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
2023-10-19 02:35:16,034 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=81, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-19 02:35:16,035 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 02:35:16,035 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Train: 6900 sentences
2023-10-19 02:35:16,036 (train_with_dev=False, train_with_test=False)
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Training Params:
2023-10-19 02:35:16,036 - learning_rate: "5e-05"
2023-10-19 02:35:16,036 - mini_batch_size: "16"
2023-10-19 02:35:16,036 - max_epochs: "10"
2023-10-19 02:35:16,036 - shuffle: "True"
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Plugins:
2023-10-19 02:35:16,036 - TensorboardLogger
2023-10-19 02:35:16,036 - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 02:35:16,036 - metric: "('micro avg', 'f1-score')"
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Computation:
2023-10-19 02:35:16,036 - compute on device: cuda:0
2023-10-19 02:35:16,036 - embedding storage: none
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-4"
2023-10-19 02:35:16,037 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 02:35:30,501 epoch 1 - iter 43/432 - loss 4.71793452 - time (sec): 14.46 - samples/sec: 451.91 - lr: 0.000005 - momentum: 0.000000
2023-10-19 02:35:45,140 epoch 1 - iter 86/432 - loss 3.56588335 - time (sec): 29.10 - samples/sec: 432.16 - lr: 0.000010 - momentum: 0.000000
2023-10-19 02:35:59,499 epoch 1 - iter 129/432 - loss 2.94353643 - time (sec): 43.46 - samples/sec: 428.24 - lr: 0.000015 - momentum: 0.000000
2023-10-19 02:36:14,178 epoch 1 - iter 172/432 - loss 2.57618338 - time (sec): 58.14 - samples/sec: 429.10 - lr: 0.000020 - momentum: 0.000000
2023-10-19 02:36:29,937 epoch 1 - iter 215/432 - loss 2.31404215 - time (sec): 73.90 - samples/sec: 420.18 - lr: 0.000025 - momentum: 0.000000
2023-10-19 02:36:43,961 epoch 1 - iter 258/432 - loss 2.08985425 - time (sec): 87.92 - samples/sec: 423.81 - lr: 0.000030 - momentum: 0.000000
2023-10-19 02:36:58,508 epoch 1 - iter 301/432 - loss 1.90122408 - time (sec): 102.47 - samples/sec: 423.32 - lr: 0.000035 - momentum: 0.000000
2023-10-19 02:37:13,202 epoch 1 - iter 344/432 - loss 1.75799120 - time (sec): 117.16 - samples/sec: 423.69 - lr: 0.000040 - momentum: 0.000000
2023-10-19 02:37:27,381 epoch 1 - iter 387/432 - loss 1.64106351 - time (sec): 131.34 - samples/sec: 422.49 - lr: 0.000045 - momentum: 0.000000
2023-10-19 02:37:42,690 epoch 1 - iter 430/432 - loss 1.53540212 - time (sec): 146.65 - samples/sec: 420.47 - lr: 0.000050 - momentum: 0.000000
2023-10-19 02:37:43,317 ----------------------------------------------------------------------------------------------------
2023-10-19 02:37:43,317 EPOCH 1 done: loss 1.5323 - lr: 0.000050
2023-10-19 02:37:56,983 DEV : loss 0.4536784291267395 - f1-score (micro avg) 0.732
2023-10-19 02:37:57,007 saving best model
2023-10-19 02:37:57,475 ----------------------------------------------------------------------------------------------------
2023-10-19 02:38:11,866 epoch 2 - iter 43/432 - loss 0.49805725 - time (sec): 14.39 - samples/sec: 413.14 - lr: 0.000049 - momentum: 0.000000
2023-10-19 02:38:25,989 epoch 2 - iter 86/432 - loss 0.49067153 - time (sec): 28.51 - samples/sec: 441.62 - lr: 0.000049 - momentum: 0.000000
2023-10-19 02:38:41,083 epoch 2 - iter 129/432 - loss 0.46877508 - time (sec): 43.61 - samples/sec: 419.98 - lr: 0.000048 - momentum: 0.000000
2023-10-19 02:38:55,498 epoch 2 - iter 172/432 - loss 0.45344862 - time (sec): 58.02 - samples/sec: 421.19 - lr: 0.000048 - momentum: 0.000000
2023-10-19 02:39:10,199 epoch 2 - iter 215/432 - loss 0.44579460 - time (sec): 72.72 - samples/sec: 418.60 - lr: 0.000047 - momentum: 0.000000
2023-10-19 02:39:25,223 epoch 2 - iter 258/432 - loss 0.43685439 - time (sec): 87.75 - samples/sec: 419.45 - lr: 0.000047 - momentum: 0.000000
2023-10-19 02:39:41,013 epoch 2 - iter 301/432 - loss 0.42520139 - time (sec): 103.54 - samples/sec: 414.52 - lr: 0.000046 - momentum: 0.000000
2023-10-19 02:39:56,695 epoch 2 - iter 344/432 - loss 0.41678397 - time (sec): 119.22 - samples/sec: 408.54 - lr: 0.000046 - momentum: 0.000000
2023-10-19 02:40:13,095 epoch 2 - iter 387/432 - loss 0.40679354 - time (sec): 135.62 - samples/sec: 406.53 - lr: 0.000045 - momentum: 0.000000
2023-10-19 02:40:28,122 epoch 2 - iter 430/432 - loss 0.39818144 - time (sec): 150.65 - samples/sec: 409.30 - lr: 0.000044 - momentum: 0.000000
2023-10-19 02:40:28,692 ----------------------------------------------------------------------------------------------------
2023-10-19 02:40:28,693 EPOCH 2 done: loss 0.3981 - lr: 0.000044
2023-10-19 02:40:42,056 DEV : loss 0.3231566250324249 - f1-score (micro avg) 0.7892
2023-10-19 02:40:42,080 saving best model
2023-10-19 02:40:43,381 ----------------------------------------------------------------------------------------------------
2023-10-19 02:40:58,096 epoch 3 - iter 43/432 - loss 0.25451405 - time (sec): 14.71 - samples/sec: 422.81 - lr: 0.000044 - momentum: 0.000000
2023-10-19 02:41:12,217 epoch 3 - iter 86/432 - loss 0.24314495 - time (sec): 28.83 - samples/sec: 428.82 - lr: 0.000043 - momentum: 0.000000
2023-10-19 02:41:27,101 epoch 3 - iter 129/432 - loss 0.24063026 - time (sec): 43.72 - samples/sec: 421.24 - lr: 0.000043 - momentum: 0.000000
2023-10-19 02:41:42,160 epoch 3 - iter 172/432 - loss 0.24182864 - time (sec): 58.78 - samples/sec: 421.72 - lr: 0.000042 - momentum: 0.000000
2023-10-19 02:41:57,511 epoch 3 - iter 215/432 - loss 0.24316250 - time (sec): 74.13 - samples/sec: 415.84 - lr: 0.000042 - momentum: 0.000000
2023-10-19 02:42:12,451 epoch 3 - iter 258/432 - loss 0.24456626 - time (sec): 89.07 - samples/sec: 415.21 - lr: 0.000041 - momentum: 0.000000
2023-10-19 02:42:28,393 epoch 3 - iter 301/432 - loss 0.24484776 - time (sec): 105.01 - samples/sec: 412.79 - lr: 0.000041 - momentum: 0.000000
2023-10-19 02:42:43,735 epoch 3 - iter 344/432 - loss 0.24662885 - time (sec): 120.35 - samples/sec: 410.98 - lr: 0.000040 - momentum: 0.000000
2023-10-19 02:42:59,091 epoch 3 - iter 387/432 - loss 0.24622643 - time (sec): 135.71 - samples/sec: 410.98 - lr: 0.000039 - momentum: 0.000000
2023-10-19 02:43:13,132 epoch 3 - iter 430/432 - loss 0.24525886 - time (sec): 149.75 - samples/sec: 411.59 - lr: 0.000039 - momentum: 0.000000
2023-10-19 02:43:13,680 ----------------------------------------------------------------------------------------------------
2023-10-19 02:43:13,680 EPOCH 3 done: loss 0.2450 - lr: 0.000039
2023-10-19 02:43:27,003 DEV : loss 0.30216994881629944 - f1-score (micro avg) 0.8187
2023-10-19 02:43:27,027 saving best model
2023-10-19 02:43:28,322 ----------------------------------------------------------------------------------------------------
2023-10-19 02:43:42,926 epoch 4 - iter 43/432 - loss 0.17397582 - time (sec): 14.60 - samples/sec: 414.72 - lr: 0.000038 - momentum: 0.000000
2023-10-19 02:43:58,788 epoch 4 - iter 86/432 - loss 0.18289248 - time (sec): 30.46 - samples/sec: 397.85 - lr: 0.000038 - momentum: 0.000000
2023-10-19 02:44:13,897 epoch 4 - iter 129/432 - loss 0.18392678 - time (sec): 45.57 - samples/sec: 401.13 - lr: 0.000037 - momentum: 0.000000
2023-10-19 02:44:29,294 epoch 4 - iter 172/432 - loss 0.18556978 - time (sec): 60.97 - samples/sec: 399.38 - lr: 0.000037 - momentum: 0.000000
2023-10-19 02:44:43,232 epoch 4 - iter 215/432 - loss 0.18331243 - time (sec): 74.91 - samples/sec: 405.80 - lr: 0.000036 - momentum: 0.000000
2023-10-19 02:44:58,645 epoch 4 - iter 258/432 - loss 0.18158645 - time (sec): 90.32 - samples/sec: 400.76 - lr: 0.000036 - momentum: 0.000000
2023-10-19 02:45:13,347 epoch 4 - iter 301/432 - loss 0.17820410 - time (sec): 105.02 - samples/sec: 406.14 - lr: 0.000035 - momentum: 0.000000
2023-10-19 02:45:28,906 epoch 4 - iter 344/432 - loss 0.17684603 - time (sec): 120.58 - samples/sec: 409.95 - lr: 0.000034 - momentum: 0.000000
2023-10-19 02:45:44,187 epoch 4 - iter 387/432 - loss 0.17775296 - time (sec): 135.86 - samples/sec: 407.99 - lr: 0.000034 - momentum: 0.000000
2023-10-19 02:45:58,637 epoch 4 - iter 430/432 - loss 0.17798160 - time (sec): 150.31 - samples/sec: 410.10 - lr: 0.000033 - momentum: 0.000000
2023-10-19 02:45:59,219 ----------------------------------------------------------------------------------------------------
2023-10-19 02:45:59,220 EPOCH 4 done: loss 0.1782 - lr: 0.000033
2023-10-19 02:46:12,571 DEV : loss 0.30217471718788147 - f1-score (micro avg) 0.8235
2023-10-19 02:46:12,595 saving best model
2023-10-19 02:46:13,892 ----------------------------------------------------------------------------------------------------
2023-10-19 02:46:28,339 epoch 5 - iter 43/432 - loss 0.11679026 - time (sec): 14.45 - samples/sec: 412.45 - lr: 0.000033 - momentum: 0.000000
2023-10-19 02:46:42,977 epoch 5 - iter 86/432 - loss 0.11734061 - time (sec): 29.08 - samples/sec: 418.83 - lr: 0.000032 - momentum: 0.000000
2023-10-19 02:46:57,663 epoch 5 - iter 129/432 - loss 0.12729745 - time (sec): 43.77 - samples/sec: 428.70 - lr: 0.000032 - momentum: 0.000000
2023-10-19 02:47:12,672 epoch 5 - iter 172/432 - loss 0.12477897 - time (sec): 58.78 - samples/sec: 426.72 - lr: 0.000031 - momentum: 0.000000
2023-10-19 02:47:28,128 epoch 5 - iter 215/432 - loss 0.12434555 - time (sec): 74.24 - samples/sec: 413.09 - lr: 0.000031 - momentum: 0.000000
2023-10-19 02:47:42,287 epoch 5 - iter 258/432 - loss 0.12362897 - time (sec): 88.39 - samples/sec: 413.90 - lr: 0.000030 - momentum: 0.000000
2023-10-19 02:47:56,715 epoch 5 - iter 301/432 - loss 0.12465833 - time (sec): 102.82 - samples/sec: 416.26 - lr: 0.000029 - momentum: 0.000000
2023-10-19 02:48:12,495 epoch 5 - iter 344/432 - loss 0.12779382 - time (sec): 118.60 - samples/sec: 414.22 - lr: 0.000029 - momentum: 0.000000
2023-10-19 02:48:27,371 epoch 5 - iter 387/432 - loss 0.12918879 - time (sec): 133.48 - samples/sec: 414.75 - lr: 0.000028 - momentum: 0.000000
2023-10-19 02:48:42,352 epoch 5 - iter 430/432 - loss 0.12891599 - time (sec): 148.46 - samples/sec: 415.21 - lr: 0.000028 - momentum: 0.000000
2023-10-19 02:48:42,872 ----------------------------------------------------------------------------------------------------
2023-10-19 02:48:42,872 EPOCH 5 done: loss 0.1291 - lr: 0.000028
2023-10-19 02:48:54,964 DEV : loss 0.3222440779209137 - f1-score (micro avg) 0.8314
2023-10-19 02:48:54,988 saving best model
2023-10-19 02:48:56,284 ----------------------------------------------------------------------------------------------------
2023-10-19 02:49:09,855 epoch 6 - iter 43/432 - loss 0.09462246 - time (sec): 13.57 - samples/sec: 464.65 - lr: 0.000027 - momentum: 0.000000
2023-10-19 02:49:23,342 epoch 6 - iter 86/432 - loss 0.09120079 - time (sec): 27.06 - samples/sec: 463.98 - lr: 0.000027 - momentum: 0.000000
2023-10-19 02:49:37,940 epoch 6 - iter 129/432 - loss 0.08754151 - time (sec): 41.65 - samples/sec: 453.11 - lr: 0.000026 - momentum: 0.000000
2023-10-19 02:49:51,924 epoch 6 - iter 172/432 - loss 0.08707151 - time (sec): 55.64 - samples/sec: 452.29 - lr: 0.000026 - momentum: 0.000000
2023-10-19 02:50:05,558 epoch 6 - iter 215/432 - loss 0.08872203 - time (sec): 69.27 - samples/sec: 452.71 - lr: 0.000025 - momentum: 0.000000
2023-10-19 02:50:18,749 epoch 6 - iter 258/432 - loss 0.09178993 - time (sec): 82.46 - samples/sec: 449.21 - lr: 0.000024 - momentum: 0.000000
2023-10-19 02:50:31,972 epoch 6 - iter 301/432 - loss 0.09361707 - time (sec): 95.69 - samples/sec: 450.51 - lr: 0.000024 - momentum: 0.000000
2023-10-19 02:50:45,324 epoch 6 - iter 344/432 - loss 0.09605405 - time (sec): 109.04 - samples/sec: 452.64 - lr: 0.000023 - momentum: 0.000000
2023-10-19 02:50:58,578 epoch 6 - iter 387/432 - loss 0.09794359 - time (sec): 122.29 - samples/sec: 453.12 - lr: 0.000023 - momentum: 0.000000
2023-10-19 02:51:11,851 epoch 6 - iter 430/432 - loss 0.09911853 - time (sec): 135.57 - samples/sec: 454.89 - lr: 0.000022 - momentum: 0.000000
2023-10-19 02:51:12,551 ----------------------------------------------------------------------------------------------------
2023-10-19 02:51:12,551 EPOCH 6 done: loss 0.0992 - lr: 0.000022
2023-10-19 02:51:24,641 DEV : loss 0.341653436422348 - f1-score (micro avg) 0.8264
2023-10-19 02:51:24,666 ----------------------------------------------------------------------------------------------------
2023-10-19 02:51:37,807 epoch 7 - iter 43/432 - loss 0.06758819 - time (sec): 13.14 - samples/sec: 475.32 - lr: 0.000022 - momentum: 0.000000
2023-10-19 02:51:51,410 epoch 7 - iter 86/432 - loss 0.07314013 - time (sec): 26.74 - samples/sec: 455.60 - lr: 0.000021 - momentum: 0.000000
2023-10-19 02:52:06,003 epoch 7 - iter 129/432 - loss 0.07144795 - time (sec): 41.34 - samples/sec: 448.25 - lr: 0.000021 - momentum: 0.000000
2023-10-19 02:52:19,135 epoch 7 - iter 172/432 - loss 0.07183481 - time (sec): 54.47 - samples/sec: 449.24 - lr: 0.000020 - momentum: 0.000000
2023-10-19 02:52:32,443 epoch 7 - iter 215/432 - loss 0.07341790 - time (sec): 67.78 - samples/sec: 446.53 - lr: 0.000019 - momentum: 0.000000
2023-10-19 02:52:46,676 epoch 7 - iter 258/432 - loss 0.07333719 - time (sec): 82.01 - samples/sec: 444.19 - lr: 0.000019 - momentum: 0.000000
2023-10-19 02:53:01,228 epoch 7 - iter 301/432 - loss 0.07256051 - time (sec): 96.56 - samples/sec: 443.94 - lr: 0.000018 - momentum: 0.000000
2023-10-19 02:53:15,259 epoch 7 - iter 344/432 - loss 0.07318786 - time (sec): 110.59 - samples/sec: 441.26 - lr: 0.000018 - momentum: 0.000000
2023-10-19 02:53:29,458 epoch 7 - iter 387/432 - loss 0.07390957 - time (sec): 124.79 - samples/sec: 443.27 - lr: 0.000017 - momentum: 0.000000
2023-10-19 02:53:44,406 epoch 7 - iter 430/432 - loss 0.07553520 - time (sec): 139.74 - samples/sec: 441.18 - lr: 0.000017 - momentum: 0.000000
2023-10-19 02:53:44,877 ----------------------------------------------------------------------------------------------------
2023-10-19 02:53:44,878 EPOCH 7 done: loss 0.0759 - lr: 0.000017
2023-10-19 02:53:57,808 DEV : loss 0.3510221242904663 - f1-score (micro avg) 0.8318
2023-10-19 02:53:57,844 saving best model
2023-10-19 02:53:59,183 ----------------------------------------------------------------------------------------------------
2023-10-19 02:54:13,218 epoch 8 - iter 43/432 - loss 0.06618778 - time (sec): 14.03 - samples/sec: 460.75 - lr: 0.000016 - momentum: 0.000000
2023-10-19 02:54:27,166 epoch 8 - iter 86/432 - loss 0.06330724 - time (sec): 27.98 - samples/sec: 461.69 - lr: 0.000016 - momentum: 0.000000
2023-10-19 02:54:42,151 epoch 8 - iter 129/432 - loss 0.05910976 - time (sec): 42.97 - samples/sec: 445.97 - lr: 0.000015 - momentum: 0.000000
2023-10-19 02:54:56,679 epoch 8 - iter 172/432 - loss 0.05755682 - time (sec): 57.50 - samples/sec: 433.46 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:55:11,485 epoch 8 - iter 215/432 - loss 0.05604373 - time (sec): 72.30 - samples/sec: 434.16 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:55:26,413 epoch 8 - iter 258/432 - loss 0.05518064 - time (sec): 87.23 - samples/sec: 435.18 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:55:40,955 epoch 8 - iter 301/432 - loss 0.05387243 - time (sec): 101.77 - samples/sec: 428.81 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:55:56,874 epoch 8 - iter 344/432 - loss 0.05296670 - time (sec): 117.69 - samples/sec: 419.48 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:56:12,201 epoch 8 - iter 387/432 - loss 0.05451018 - time (sec): 133.02 - samples/sec: 417.31 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:56:27,397 epoch 8 - iter 430/432 - loss 0.05443317 - time (sec): 148.21 - samples/sec: 416.29 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:56:27,923 ----------------------------------------------------------------------------------------------------
2023-10-19 02:56:27,924 EPOCH 8 done: loss 0.0544 - lr: 0.000011
2023-10-19 02:56:41,680 DEV : loss 0.37782010436058044 - f1-score (micro avg) 0.839
2023-10-19 02:56:41,704 saving best model
2023-10-19 02:56:43,007 ----------------------------------------------------------------------------------------------------
2023-10-19 02:56:56,698 epoch 9 - iter 43/432 - loss 0.03577487 - time (sec): 13.69 - samples/sec: 441.62 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:57:13,125 epoch 9 - iter 86/432 - loss 0.03920506 - time (sec): 30.12 - samples/sec: 393.06 - lr: 0.000010 - momentum: 0.000000
2023-10-19 02:57:27,828 epoch 9 - iter 129/432 - loss 0.04567232 - time (sec): 44.82 - samples/sec: 395.69 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:57:42,760 epoch 9 - iter 172/432 - loss 0.04411163 - time (sec): 59.75 - samples/sec: 397.14 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:57:57,684 epoch 9 - iter 215/432 - loss 0.04223026 - time (sec): 74.68 - samples/sec: 400.69 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:58:13,414 epoch 9 - iter 258/432 - loss 0.04167944 - time (sec): 90.41 - samples/sec: 398.53 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:58:28,035 epoch 9 - iter 301/432 - loss 0.04175253 - time (sec): 105.03 - samples/sec: 402.79 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:58:41,647 epoch 9 - iter 344/432 - loss 0.04009740 - time (sec): 118.64 - samples/sec: 410.90 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:58:55,026 epoch 9 - iter 387/432 - loss 0.04027926 - time (sec): 132.02 - samples/sec: 418.43 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:59:08,652 epoch 9 - iter 430/432 - loss 0.04130173 - time (sec): 145.64 - samples/sec: 423.11 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:59:09,081 ----------------------------------------------------------------------------------------------------
2023-10-19 02:59:09,081 EPOCH 9 done: loss 0.0412 - lr: 0.000006
2023-10-19 02:59:21,114 DEV : loss 0.41709104180336 - f1-score (micro avg) 0.8413
2023-10-19 02:59:21,138 saving best model
2023-10-19 02:59:22,432 ----------------------------------------------------------------------------------------------------
2023-10-19 02:59:36,187 epoch 10 - iter 43/432 - loss 0.03959866 - time (sec): 13.75 - samples/sec: 477.71 - lr: 0.000005 - momentum: 0.000000
2023-10-19 02:59:50,368 epoch 10 - iter 86/432 - loss 0.03400023 - time (sec): 27.93 - samples/sec: 443.69 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:00:03,803 epoch 10 - iter 129/432 - loss 0.03597026 - time (sec): 41.37 - samples/sec: 451.88 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:00:17,392 epoch 10 - iter 172/432 - loss 0.03332945 - time (sec): 54.96 - samples/sec: 453.09 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:00:31,438 epoch 10 - iter 215/432 - loss 0.03275216 - time (sec): 69.00 - samples/sec: 450.42 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:00:44,289 epoch 10 - iter 258/432 - loss 0.03302964 - time (sec): 81.86 - samples/sec: 451.13 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:00:57,604 epoch 10 - iter 301/432 - loss 0.03268473 - time (sec): 95.17 - samples/sec: 448.65 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:01:11,615 epoch 10 - iter 344/432 - loss 0.03345149 - time (sec): 109.18 - samples/sec: 448.84 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:01:25,592 epoch 10 - iter 387/432 - loss 0.03394635 - time (sec): 123.16 - samples/sec: 447.46 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:01:39,565 epoch 10 - iter 430/432 - loss 0.03475794 - time (sec): 137.13 - samples/sec: 450.08 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:01:40,005 ----------------------------------------------------------------------------------------------------
2023-10-19 03:01:40,005 EPOCH 10 done: loss 0.0347 - lr: 0.000000
2023-10-19 03:01:52,142 DEV : loss 0.4283430576324463 - f1-score (micro avg) 0.8419
2023-10-19 03:01:52,167 saving best model
2023-10-19 03:01:54,294 ----------------------------------------------------------------------------------------------------
2023-10-19 03:01:54,295 Loading model from best epoch ...
2023-10-19 03:01:56,523 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 03:02:13,037
Results:
- F-score (micro) 0.7766
- F-score (macro) 0.5901
- Accuracy 0.6791
By class:
precision recall f1-score support
trigger 0.7289 0.6002 0.6583 833
location-stop 0.8575 0.8418 0.8496 765
location 0.8194 0.8256 0.8225 665
location-city 0.8127 0.8816 0.8458 566
date 0.8868 0.8553 0.8708 394
location-street 0.9290 0.8808 0.9043 386
time 0.7747 0.8867 0.8270 256
location-route 0.8504 0.7606 0.8030 284
organization-company 0.8373 0.6944 0.7592 252
distance 1.0000 1.0000 1.0000 167
number 0.6910 0.8255 0.7523 149
duration 0.3709 0.3436 0.3567 163
event-cause 0.0000 0.0000 0.0000 0
disaster-type 0.9118 0.4493 0.6019 69
organization 0.5357 0.5357 0.5357 28
person 0.4545 1.0000 0.6250 10
set 0.0000 0.0000 0.0000 0
org-position 0.0000 0.0000 0.0000 1
money 0.0000 0.0000 0.0000 0
micro avg 0.7736 0.7797 0.7766 4988
macro avg 0.6032 0.5990 0.5901 4988
weighted avg 0.8099 0.7797 0.7913 4988
2023-10-19 03:02:13,038 ----------------------------------------------------------------------------------------------------
|