File size: 25,497 Bytes
16cb29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
2023-10-19 02:35:16,034 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=81, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 02:35:16,035 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Corpus: 6900 train + 1576 dev + 1833 test sentences
2023-10-19 02:35:16,035 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,035 Train:  6900 sentences
2023-10-19 02:35:16,036         (train_with_dev=False, train_with_test=False)
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Training Params:
2023-10-19 02:35:16,036  - learning_rate: "5e-05" 
2023-10-19 02:35:16,036  - mini_batch_size: "16"
2023-10-19 02:35:16,036  - max_epochs: "10"
2023-10-19 02:35:16,036  - shuffle: "True"
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Plugins:
2023-10-19 02:35:16,036  - TensorboardLogger
2023-10-19 02:35:16,036  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 02:35:16,036  - metric: "('micro avg', 'f1-score')"
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,036 Computation:
2023-10-19 02:35:16,036  - compute on device: cuda:0
2023-10-19 02:35:16,036  - embedding storage: none
2023-10-19 02:35:16,036 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 Model training base path: "autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-4"
2023-10-19 02:35:16,037 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 ----------------------------------------------------------------------------------------------------
2023-10-19 02:35:16,037 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 02:35:30,501 epoch 1 - iter 43/432 - loss 4.71793452 - time (sec): 14.46 - samples/sec: 451.91 - lr: 0.000005 - momentum: 0.000000
2023-10-19 02:35:45,140 epoch 1 - iter 86/432 - loss 3.56588335 - time (sec): 29.10 - samples/sec: 432.16 - lr: 0.000010 - momentum: 0.000000
2023-10-19 02:35:59,499 epoch 1 - iter 129/432 - loss 2.94353643 - time (sec): 43.46 - samples/sec: 428.24 - lr: 0.000015 - momentum: 0.000000
2023-10-19 02:36:14,178 epoch 1 - iter 172/432 - loss 2.57618338 - time (sec): 58.14 - samples/sec: 429.10 - lr: 0.000020 - momentum: 0.000000
2023-10-19 02:36:29,937 epoch 1 - iter 215/432 - loss 2.31404215 - time (sec): 73.90 - samples/sec: 420.18 - lr: 0.000025 - momentum: 0.000000
2023-10-19 02:36:43,961 epoch 1 - iter 258/432 - loss 2.08985425 - time (sec): 87.92 - samples/sec: 423.81 - lr: 0.000030 - momentum: 0.000000
2023-10-19 02:36:58,508 epoch 1 - iter 301/432 - loss 1.90122408 - time (sec): 102.47 - samples/sec: 423.32 - lr: 0.000035 - momentum: 0.000000
2023-10-19 02:37:13,202 epoch 1 - iter 344/432 - loss 1.75799120 - time (sec): 117.16 - samples/sec: 423.69 - lr: 0.000040 - momentum: 0.000000
2023-10-19 02:37:27,381 epoch 1 - iter 387/432 - loss 1.64106351 - time (sec): 131.34 - samples/sec: 422.49 - lr: 0.000045 - momentum: 0.000000
2023-10-19 02:37:42,690 epoch 1 - iter 430/432 - loss 1.53540212 - time (sec): 146.65 - samples/sec: 420.47 - lr: 0.000050 - momentum: 0.000000
2023-10-19 02:37:43,317 ----------------------------------------------------------------------------------------------------
2023-10-19 02:37:43,317 EPOCH 1 done: loss 1.5323 - lr: 0.000050
2023-10-19 02:37:56,983 DEV : loss 0.4536784291267395 - f1-score (micro avg)  0.732
2023-10-19 02:37:57,007 saving best model
2023-10-19 02:37:57,475 ----------------------------------------------------------------------------------------------------
2023-10-19 02:38:11,866 epoch 2 - iter 43/432 - loss 0.49805725 - time (sec): 14.39 - samples/sec: 413.14 - lr: 0.000049 - momentum: 0.000000
2023-10-19 02:38:25,989 epoch 2 - iter 86/432 - loss 0.49067153 - time (sec): 28.51 - samples/sec: 441.62 - lr: 0.000049 - momentum: 0.000000
2023-10-19 02:38:41,083 epoch 2 - iter 129/432 - loss 0.46877508 - time (sec): 43.61 - samples/sec: 419.98 - lr: 0.000048 - momentum: 0.000000
2023-10-19 02:38:55,498 epoch 2 - iter 172/432 - loss 0.45344862 - time (sec): 58.02 - samples/sec: 421.19 - lr: 0.000048 - momentum: 0.000000
2023-10-19 02:39:10,199 epoch 2 - iter 215/432 - loss 0.44579460 - time (sec): 72.72 - samples/sec: 418.60 - lr: 0.000047 - momentum: 0.000000
2023-10-19 02:39:25,223 epoch 2 - iter 258/432 - loss 0.43685439 - time (sec): 87.75 - samples/sec: 419.45 - lr: 0.000047 - momentum: 0.000000
2023-10-19 02:39:41,013 epoch 2 - iter 301/432 - loss 0.42520139 - time (sec): 103.54 - samples/sec: 414.52 - lr: 0.000046 - momentum: 0.000000
2023-10-19 02:39:56,695 epoch 2 - iter 344/432 - loss 0.41678397 - time (sec): 119.22 - samples/sec: 408.54 - lr: 0.000046 - momentum: 0.000000
2023-10-19 02:40:13,095 epoch 2 - iter 387/432 - loss 0.40679354 - time (sec): 135.62 - samples/sec: 406.53 - lr: 0.000045 - momentum: 0.000000
2023-10-19 02:40:28,122 epoch 2 - iter 430/432 - loss 0.39818144 - time (sec): 150.65 - samples/sec: 409.30 - lr: 0.000044 - momentum: 0.000000
2023-10-19 02:40:28,692 ----------------------------------------------------------------------------------------------------
2023-10-19 02:40:28,693 EPOCH 2 done: loss 0.3981 - lr: 0.000044
2023-10-19 02:40:42,056 DEV : loss 0.3231566250324249 - f1-score (micro avg)  0.7892
2023-10-19 02:40:42,080 saving best model
2023-10-19 02:40:43,381 ----------------------------------------------------------------------------------------------------
2023-10-19 02:40:58,096 epoch 3 - iter 43/432 - loss 0.25451405 - time (sec): 14.71 - samples/sec: 422.81 - lr: 0.000044 - momentum: 0.000000
2023-10-19 02:41:12,217 epoch 3 - iter 86/432 - loss 0.24314495 - time (sec): 28.83 - samples/sec: 428.82 - lr: 0.000043 - momentum: 0.000000
2023-10-19 02:41:27,101 epoch 3 - iter 129/432 - loss 0.24063026 - time (sec): 43.72 - samples/sec: 421.24 - lr: 0.000043 - momentum: 0.000000
2023-10-19 02:41:42,160 epoch 3 - iter 172/432 - loss 0.24182864 - time (sec): 58.78 - samples/sec: 421.72 - lr: 0.000042 - momentum: 0.000000
2023-10-19 02:41:57,511 epoch 3 - iter 215/432 - loss 0.24316250 - time (sec): 74.13 - samples/sec: 415.84 - lr: 0.000042 - momentum: 0.000000
2023-10-19 02:42:12,451 epoch 3 - iter 258/432 - loss 0.24456626 - time (sec): 89.07 - samples/sec: 415.21 - lr: 0.000041 - momentum: 0.000000
2023-10-19 02:42:28,393 epoch 3 - iter 301/432 - loss 0.24484776 - time (sec): 105.01 - samples/sec: 412.79 - lr: 0.000041 - momentum: 0.000000
2023-10-19 02:42:43,735 epoch 3 - iter 344/432 - loss 0.24662885 - time (sec): 120.35 - samples/sec: 410.98 - lr: 0.000040 - momentum: 0.000000
2023-10-19 02:42:59,091 epoch 3 - iter 387/432 - loss 0.24622643 - time (sec): 135.71 - samples/sec: 410.98 - lr: 0.000039 - momentum: 0.000000
2023-10-19 02:43:13,132 epoch 3 - iter 430/432 - loss 0.24525886 - time (sec): 149.75 - samples/sec: 411.59 - lr: 0.000039 - momentum: 0.000000
2023-10-19 02:43:13,680 ----------------------------------------------------------------------------------------------------
2023-10-19 02:43:13,680 EPOCH 3 done: loss 0.2450 - lr: 0.000039
2023-10-19 02:43:27,003 DEV : loss 0.30216994881629944 - f1-score (micro avg)  0.8187
2023-10-19 02:43:27,027 saving best model
2023-10-19 02:43:28,322 ----------------------------------------------------------------------------------------------------
2023-10-19 02:43:42,926 epoch 4 - iter 43/432 - loss 0.17397582 - time (sec): 14.60 - samples/sec: 414.72 - lr: 0.000038 - momentum: 0.000000
2023-10-19 02:43:58,788 epoch 4 - iter 86/432 - loss 0.18289248 - time (sec): 30.46 - samples/sec: 397.85 - lr: 0.000038 - momentum: 0.000000
2023-10-19 02:44:13,897 epoch 4 - iter 129/432 - loss 0.18392678 - time (sec): 45.57 - samples/sec: 401.13 - lr: 0.000037 - momentum: 0.000000
2023-10-19 02:44:29,294 epoch 4 - iter 172/432 - loss 0.18556978 - time (sec): 60.97 - samples/sec: 399.38 - lr: 0.000037 - momentum: 0.000000
2023-10-19 02:44:43,232 epoch 4 - iter 215/432 - loss 0.18331243 - time (sec): 74.91 - samples/sec: 405.80 - lr: 0.000036 - momentum: 0.000000
2023-10-19 02:44:58,645 epoch 4 - iter 258/432 - loss 0.18158645 - time (sec): 90.32 - samples/sec: 400.76 - lr: 0.000036 - momentum: 0.000000
2023-10-19 02:45:13,347 epoch 4 - iter 301/432 - loss 0.17820410 - time (sec): 105.02 - samples/sec: 406.14 - lr: 0.000035 - momentum: 0.000000
2023-10-19 02:45:28,906 epoch 4 - iter 344/432 - loss 0.17684603 - time (sec): 120.58 - samples/sec: 409.95 - lr: 0.000034 - momentum: 0.000000
2023-10-19 02:45:44,187 epoch 4 - iter 387/432 - loss 0.17775296 - time (sec): 135.86 - samples/sec: 407.99 - lr: 0.000034 - momentum: 0.000000
2023-10-19 02:45:58,637 epoch 4 - iter 430/432 - loss 0.17798160 - time (sec): 150.31 - samples/sec: 410.10 - lr: 0.000033 - momentum: 0.000000
2023-10-19 02:45:59,219 ----------------------------------------------------------------------------------------------------
2023-10-19 02:45:59,220 EPOCH 4 done: loss 0.1782 - lr: 0.000033
2023-10-19 02:46:12,571 DEV : loss 0.30217471718788147 - f1-score (micro avg)  0.8235
2023-10-19 02:46:12,595 saving best model
2023-10-19 02:46:13,892 ----------------------------------------------------------------------------------------------------
2023-10-19 02:46:28,339 epoch 5 - iter 43/432 - loss 0.11679026 - time (sec): 14.45 - samples/sec: 412.45 - lr: 0.000033 - momentum: 0.000000
2023-10-19 02:46:42,977 epoch 5 - iter 86/432 - loss 0.11734061 - time (sec): 29.08 - samples/sec: 418.83 - lr: 0.000032 - momentum: 0.000000
2023-10-19 02:46:57,663 epoch 5 - iter 129/432 - loss 0.12729745 - time (sec): 43.77 - samples/sec: 428.70 - lr: 0.000032 - momentum: 0.000000
2023-10-19 02:47:12,672 epoch 5 - iter 172/432 - loss 0.12477897 - time (sec): 58.78 - samples/sec: 426.72 - lr: 0.000031 - momentum: 0.000000
2023-10-19 02:47:28,128 epoch 5 - iter 215/432 - loss 0.12434555 - time (sec): 74.24 - samples/sec: 413.09 - lr: 0.000031 - momentum: 0.000000
2023-10-19 02:47:42,287 epoch 5 - iter 258/432 - loss 0.12362897 - time (sec): 88.39 - samples/sec: 413.90 - lr: 0.000030 - momentum: 0.000000
2023-10-19 02:47:56,715 epoch 5 - iter 301/432 - loss 0.12465833 - time (sec): 102.82 - samples/sec: 416.26 - lr: 0.000029 - momentum: 0.000000
2023-10-19 02:48:12,495 epoch 5 - iter 344/432 - loss 0.12779382 - time (sec): 118.60 - samples/sec: 414.22 - lr: 0.000029 - momentum: 0.000000
2023-10-19 02:48:27,371 epoch 5 - iter 387/432 - loss 0.12918879 - time (sec): 133.48 - samples/sec: 414.75 - lr: 0.000028 - momentum: 0.000000
2023-10-19 02:48:42,352 epoch 5 - iter 430/432 - loss 0.12891599 - time (sec): 148.46 - samples/sec: 415.21 - lr: 0.000028 - momentum: 0.000000
2023-10-19 02:48:42,872 ----------------------------------------------------------------------------------------------------
2023-10-19 02:48:42,872 EPOCH 5 done: loss 0.1291 - lr: 0.000028
2023-10-19 02:48:54,964 DEV : loss 0.3222440779209137 - f1-score (micro avg)  0.8314
2023-10-19 02:48:54,988 saving best model
2023-10-19 02:48:56,284 ----------------------------------------------------------------------------------------------------
2023-10-19 02:49:09,855 epoch 6 - iter 43/432 - loss 0.09462246 - time (sec): 13.57 - samples/sec: 464.65 - lr: 0.000027 - momentum: 0.000000
2023-10-19 02:49:23,342 epoch 6 - iter 86/432 - loss 0.09120079 - time (sec): 27.06 - samples/sec: 463.98 - lr: 0.000027 - momentum: 0.000000
2023-10-19 02:49:37,940 epoch 6 - iter 129/432 - loss 0.08754151 - time (sec): 41.65 - samples/sec: 453.11 - lr: 0.000026 - momentum: 0.000000
2023-10-19 02:49:51,924 epoch 6 - iter 172/432 - loss 0.08707151 - time (sec): 55.64 - samples/sec: 452.29 - lr: 0.000026 - momentum: 0.000000
2023-10-19 02:50:05,558 epoch 6 - iter 215/432 - loss 0.08872203 - time (sec): 69.27 - samples/sec: 452.71 - lr: 0.000025 - momentum: 0.000000
2023-10-19 02:50:18,749 epoch 6 - iter 258/432 - loss 0.09178993 - time (sec): 82.46 - samples/sec: 449.21 - lr: 0.000024 - momentum: 0.000000
2023-10-19 02:50:31,972 epoch 6 - iter 301/432 - loss 0.09361707 - time (sec): 95.69 - samples/sec: 450.51 - lr: 0.000024 - momentum: 0.000000
2023-10-19 02:50:45,324 epoch 6 - iter 344/432 - loss 0.09605405 - time (sec): 109.04 - samples/sec: 452.64 - lr: 0.000023 - momentum: 0.000000
2023-10-19 02:50:58,578 epoch 6 - iter 387/432 - loss 0.09794359 - time (sec): 122.29 - samples/sec: 453.12 - lr: 0.000023 - momentum: 0.000000
2023-10-19 02:51:11,851 epoch 6 - iter 430/432 - loss 0.09911853 - time (sec): 135.57 - samples/sec: 454.89 - lr: 0.000022 - momentum: 0.000000
2023-10-19 02:51:12,551 ----------------------------------------------------------------------------------------------------
2023-10-19 02:51:12,551 EPOCH 6 done: loss 0.0992 - lr: 0.000022
2023-10-19 02:51:24,641 DEV : loss 0.341653436422348 - f1-score (micro avg)  0.8264
2023-10-19 02:51:24,666 ----------------------------------------------------------------------------------------------------
2023-10-19 02:51:37,807 epoch 7 - iter 43/432 - loss 0.06758819 - time (sec): 13.14 - samples/sec: 475.32 - lr: 0.000022 - momentum: 0.000000
2023-10-19 02:51:51,410 epoch 7 - iter 86/432 - loss 0.07314013 - time (sec): 26.74 - samples/sec: 455.60 - lr: 0.000021 - momentum: 0.000000
2023-10-19 02:52:06,003 epoch 7 - iter 129/432 - loss 0.07144795 - time (sec): 41.34 - samples/sec: 448.25 - lr: 0.000021 - momentum: 0.000000
2023-10-19 02:52:19,135 epoch 7 - iter 172/432 - loss 0.07183481 - time (sec): 54.47 - samples/sec: 449.24 - lr: 0.000020 - momentum: 0.000000
2023-10-19 02:52:32,443 epoch 7 - iter 215/432 - loss 0.07341790 - time (sec): 67.78 - samples/sec: 446.53 - lr: 0.000019 - momentum: 0.000000
2023-10-19 02:52:46,676 epoch 7 - iter 258/432 - loss 0.07333719 - time (sec): 82.01 - samples/sec: 444.19 - lr: 0.000019 - momentum: 0.000000
2023-10-19 02:53:01,228 epoch 7 - iter 301/432 - loss 0.07256051 - time (sec): 96.56 - samples/sec: 443.94 - lr: 0.000018 - momentum: 0.000000
2023-10-19 02:53:15,259 epoch 7 - iter 344/432 - loss 0.07318786 - time (sec): 110.59 - samples/sec: 441.26 - lr: 0.000018 - momentum: 0.000000
2023-10-19 02:53:29,458 epoch 7 - iter 387/432 - loss 0.07390957 - time (sec): 124.79 - samples/sec: 443.27 - lr: 0.000017 - momentum: 0.000000
2023-10-19 02:53:44,406 epoch 7 - iter 430/432 - loss 0.07553520 - time (sec): 139.74 - samples/sec: 441.18 - lr: 0.000017 - momentum: 0.000000
2023-10-19 02:53:44,877 ----------------------------------------------------------------------------------------------------
2023-10-19 02:53:44,878 EPOCH 7 done: loss 0.0759 - lr: 0.000017
2023-10-19 02:53:57,808 DEV : loss 0.3510221242904663 - f1-score (micro avg)  0.8318
2023-10-19 02:53:57,844 saving best model
2023-10-19 02:53:59,183 ----------------------------------------------------------------------------------------------------
2023-10-19 02:54:13,218 epoch 8 - iter 43/432 - loss 0.06618778 - time (sec): 14.03 - samples/sec: 460.75 - lr: 0.000016 - momentum: 0.000000
2023-10-19 02:54:27,166 epoch 8 - iter 86/432 - loss 0.06330724 - time (sec): 27.98 - samples/sec: 461.69 - lr: 0.000016 - momentum: 0.000000
2023-10-19 02:54:42,151 epoch 8 - iter 129/432 - loss 0.05910976 - time (sec): 42.97 - samples/sec: 445.97 - lr: 0.000015 - momentum: 0.000000
2023-10-19 02:54:56,679 epoch 8 - iter 172/432 - loss 0.05755682 - time (sec): 57.50 - samples/sec: 433.46 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:55:11,485 epoch 8 - iter 215/432 - loss 0.05604373 - time (sec): 72.30 - samples/sec: 434.16 - lr: 0.000014 - momentum: 0.000000
2023-10-19 02:55:26,413 epoch 8 - iter 258/432 - loss 0.05518064 - time (sec): 87.23 - samples/sec: 435.18 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:55:40,955 epoch 8 - iter 301/432 - loss 0.05387243 - time (sec): 101.77 - samples/sec: 428.81 - lr: 0.000013 - momentum: 0.000000
2023-10-19 02:55:56,874 epoch 8 - iter 344/432 - loss 0.05296670 - time (sec): 117.69 - samples/sec: 419.48 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:56:12,201 epoch 8 - iter 387/432 - loss 0.05451018 - time (sec): 133.02 - samples/sec: 417.31 - lr: 0.000012 - momentum: 0.000000
2023-10-19 02:56:27,397 epoch 8 - iter 430/432 - loss 0.05443317 - time (sec): 148.21 - samples/sec: 416.29 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:56:27,923 ----------------------------------------------------------------------------------------------------
2023-10-19 02:56:27,924 EPOCH 8 done: loss 0.0544 - lr: 0.000011
2023-10-19 02:56:41,680 DEV : loss 0.37782010436058044 - f1-score (micro avg)  0.839
2023-10-19 02:56:41,704 saving best model
2023-10-19 02:56:43,007 ----------------------------------------------------------------------------------------------------
2023-10-19 02:56:56,698 epoch 9 - iter 43/432 - loss 0.03577487 - time (sec): 13.69 - samples/sec: 441.62 - lr: 0.000011 - momentum: 0.000000
2023-10-19 02:57:13,125 epoch 9 - iter 86/432 - loss 0.03920506 - time (sec): 30.12 - samples/sec: 393.06 - lr: 0.000010 - momentum: 0.000000
2023-10-19 02:57:27,828 epoch 9 - iter 129/432 - loss 0.04567232 - time (sec): 44.82 - samples/sec: 395.69 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:57:42,760 epoch 9 - iter 172/432 - loss 0.04411163 - time (sec): 59.75 - samples/sec: 397.14 - lr: 0.000009 - momentum: 0.000000
2023-10-19 02:57:57,684 epoch 9 - iter 215/432 - loss 0.04223026 - time (sec): 74.68 - samples/sec: 400.69 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:58:13,414 epoch 9 - iter 258/432 - loss 0.04167944 - time (sec): 90.41 - samples/sec: 398.53 - lr: 0.000008 - momentum: 0.000000
2023-10-19 02:58:28,035 epoch 9 - iter 301/432 - loss 0.04175253 - time (sec): 105.03 - samples/sec: 402.79 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:58:41,647 epoch 9 - iter 344/432 - loss 0.04009740 - time (sec): 118.64 - samples/sec: 410.90 - lr: 0.000007 - momentum: 0.000000
2023-10-19 02:58:55,026 epoch 9 - iter 387/432 - loss 0.04027926 - time (sec): 132.02 - samples/sec: 418.43 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:59:08,652 epoch 9 - iter 430/432 - loss 0.04130173 - time (sec): 145.64 - samples/sec: 423.11 - lr: 0.000006 - momentum: 0.000000
2023-10-19 02:59:09,081 ----------------------------------------------------------------------------------------------------
2023-10-19 02:59:09,081 EPOCH 9 done: loss 0.0412 - lr: 0.000006
2023-10-19 02:59:21,114 DEV : loss 0.41709104180336 - f1-score (micro avg)  0.8413
2023-10-19 02:59:21,138 saving best model
2023-10-19 02:59:22,432 ----------------------------------------------------------------------------------------------------
2023-10-19 02:59:36,187 epoch 10 - iter 43/432 - loss 0.03959866 - time (sec): 13.75 - samples/sec: 477.71 - lr: 0.000005 - momentum: 0.000000
2023-10-19 02:59:50,368 epoch 10 - iter 86/432 - loss 0.03400023 - time (sec): 27.93 - samples/sec: 443.69 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:00:03,803 epoch 10 - iter 129/432 - loss 0.03597026 - time (sec): 41.37 - samples/sec: 451.88 - lr: 0.000004 - momentum: 0.000000
2023-10-19 03:00:17,392 epoch 10 - iter 172/432 - loss 0.03332945 - time (sec): 54.96 - samples/sec: 453.09 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:00:31,438 epoch 10 - iter 215/432 - loss 0.03275216 - time (sec): 69.00 - samples/sec: 450.42 - lr: 0.000003 - momentum: 0.000000
2023-10-19 03:00:44,289 epoch 10 - iter 258/432 - loss 0.03302964 - time (sec): 81.86 - samples/sec: 451.13 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:00:57,604 epoch 10 - iter 301/432 - loss 0.03268473 - time (sec): 95.17 - samples/sec: 448.65 - lr: 0.000002 - momentum: 0.000000
2023-10-19 03:01:11,615 epoch 10 - iter 344/432 - loss 0.03345149 - time (sec): 109.18 - samples/sec: 448.84 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:01:25,592 epoch 10 - iter 387/432 - loss 0.03394635 - time (sec): 123.16 - samples/sec: 447.46 - lr: 0.000001 - momentum: 0.000000
2023-10-19 03:01:39,565 epoch 10 - iter 430/432 - loss 0.03475794 - time (sec): 137.13 - samples/sec: 450.08 - lr: 0.000000 - momentum: 0.000000
2023-10-19 03:01:40,005 ----------------------------------------------------------------------------------------------------
2023-10-19 03:01:40,005 EPOCH 10 done: loss 0.0347 - lr: 0.000000
2023-10-19 03:01:52,142 DEV : loss 0.4283430576324463 - f1-score (micro avg)  0.8419
2023-10-19 03:01:52,167 saving best model
2023-10-19 03:01:54,294 ----------------------------------------------------------------------------------------------------
2023-10-19 03:01:54,295 Loading model from best epoch ...
2023-10-19 03:01:56,523 SequenceTagger predicts: Dictionary with 81 tags: O, S-location-route, B-location-route, E-location-route, I-location-route, S-location-stop, B-location-stop, E-location-stop, I-location-stop, S-trigger, B-trigger, E-trigger, I-trigger, S-organization-company, B-organization-company, E-organization-company, I-organization-company, S-location-city, B-location-city, E-location-city, I-location-city, S-location, B-location, E-location, I-location, S-event-cause, B-event-cause, E-event-cause, I-event-cause, S-location-street, B-location-street, E-location-street, I-location-street, S-time, B-time, E-time, I-time, S-date, B-date, E-date, I-date, S-number, B-number, E-number, I-number, S-duration, B-duration, E-duration, I-duration, S-organization
2023-10-19 03:02:13,037 
Results:
- F-score (micro) 0.7766
- F-score (macro) 0.5901
- Accuracy 0.6791

By class:
                      precision    recall  f1-score   support

             trigger     0.7289    0.6002    0.6583       833
       location-stop     0.8575    0.8418    0.8496       765
            location     0.8194    0.8256    0.8225       665
       location-city     0.8127    0.8816    0.8458       566
                date     0.8868    0.8553    0.8708       394
     location-street     0.9290    0.8808    0.9043       386
                time     0.7747    0.8867    0.8270       256
      location-route     0.8504    0.7606    0.8030       284
organization-company     0.8373    0.6944    0.7592       252
            distance     1.0000    1.0000    1.0000       167
              number     0.6910    0.8255    0.7523       149
            duration     0.3709    0.3436    0.3567       163
         event-cause     0.0000    0.0000    0.0000         0
       disaster-type     0.9118    0.4493    0.6019        69
        organization     0.5357    0.5357    0.5357        28
              person     0.4545    1.0000    0.6250        10
                 set     0.0000    0.0000    0.0000         0
        org-position     0.0000    0.0000    0.0000         1
               money     0.0000    0.0000    0.0000         0

           micro avg     0.7736    0.7797    0.7766      4988
           macro avg     0.6032    0.5990    0.5901      4988
        weighted avg     0.8099    0.7797    0.7913      4988

2023-10-19 03:02:13,038 ----------------------------------------------------------------------------------------------------