flair-clean-conll-2 / training.log
stefan-it's picture
Upload ./training.log with huggingface_hub
a155999
2023-10-27 15:57:04,764 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,765 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): Embedding(250003, 1024)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): XLMRobertaEncoder(
(layer): ModuleList(
(0-23): 24 x XLMRobertaLayer(
(attention): XLMRobertaAttention(
(self): XLMRobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): XLMRobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): XLMRobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): XLMRobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): XLMRobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-27 15:57:04,765 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,765 Corpus: 14903 train + 3449 dev + 3658 test sentences
2023-10-27 15:57:04,765 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,765 Train: 14903 sentences
2023-10-27 15:57:04,766 (train_with_dev=False, train_with_test=False)
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Training Params:
2023-10-27 15:57:04,766 - learning_rate: "5e-06"
2023-10-27 15:57:04,766 - mini_batch_size: "4"
2023-10-27 15:57:04,766 - max_epochs: "10"
2023-10-27 15:57:04,766 - shuffle: "True"
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Plugins:
2023-10-27 15:57:04,766 - TensorboardLogger
2023-10-27 15:57:04,766 - LinearScheduler | warmup_fraction: '0.1'
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Final evaluation on model from best epoch (best-model.pt)
2023-10-27 15:57:04,766 - metric: "('micro avg', 'f1-score')"
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Computation:
2023-10-27 15:57:04,766 - compute on device: cuda:0
2023-10-27 15:57:04,766 - embedding storage: none
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Model training base path: "flair-clean-conll-lr5e-06-bs4-2"
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 ----------------------------------------------------------------------------------------------------
2023-10-27 15:57:04,766 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-27 15:57:51,345 epoch 1 - iter 372/3726 - loss 3.66933019 - time (sec): 46.58 - samples/sec: 441.14 - lr: 0.000000 - momentum: 0.000000
2023-10-27 15:58:37,240 epoch 1 - iter 744/3726 - loss 2.44791196 - time (sec): 92.47 - samples/sec: 440.81 - lr: 0.000001 - momentum: 0.000000
2023-10-27 15:59:23,004 epoch 1 - iter 1116/3726 - loss 1.82180853 - time (sec): 138.24 - samples/sec: 444.18 - lr: 0.000001 - momentum: 0.000000
2023-10-27 16:00:08,910 epoch 1 - iter 1488/3726 - loss 1.46511605 - time (sec): 184.14 - samples/sec: 445.62 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:00:55,551 epoch 1 - iter 1860/3726 - loss 1.23020473 - time (sec): 230.78 - samples/sec: 444.20 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:01:41,835 epoch 1 - iter 2232/3726 - loss 1.05969433 - time (sec): 277.07 - samples/sec: 443.08 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:02:28,579 epoch 1 - iter 2604/3726 - loss 0.92870944 - time (sec): 323.81 - samples/sec: 443.41 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:03:15,307 epoch 1 - iter 2976/3726 - loss 0.83025530 - time (sec): 370.54 - samples/sec: 441.38 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:04:02,180 epoch 1 - iter 3348/3726 - loss 0.75373492 - time (sec): 417.41 - samples/sec: 439.59 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:04:49,217 epoch 1 - iter 3720/3726 - loss 0.68664292 - time (sec): 464.45 - samples/sec: 439.63 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:04:49,995 ----------------------------------------------------------------------------------------------------
2023-10-27 16:04:49,996 EPOCH 1 done: loss 0.6854 - lr: 0.000005
2023-10-27 16:05:15,688 DEV : loss 0.06499314308166504 - f1-score (micro avg) 0.941
2023-10-27 16:05:15,743 saving best model
2023-10-27 16:05:17,851 ----------------------------------------------------------------------------------------------------
2023-10-27 16:06:05,511 epoch 2 - iter 372/3726 - loss 0.08608847 - time (sec): 47.66 - samples/sec: 436.63 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:06:53,421 epoch 2 - iter 744/3726 - loss 0.08159160 - time (sec): 95.57 - samples/sec: 433.86 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:07:40,883 epoch 2 - iter 1116/3726 - loss 0.08672812 - time (sec): 143.03 - samples/sec: 434.04 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:08:28,410 epoch 2 - iter 1488/3726 - loss 0.08683755 - time (sec): 190.56 - samples/sec: 432.29 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:09:15,037 epoch 2 - iter 1860/3726 - loss 0.08779187 - time (sec): 237.18 - samples/sec: 435.35 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:10:02,026 epoch 2 - iter 2232/3726 - loss 0.08712052 - time (sec): 284.17 - samples/sec: 434.32 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:10:48,962 epoch 2 - iter 2604/3726 - loss 0.08526279 - time (sec): 331.11 - samples/sec: 434.61 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:11:35,182 epoch 2 - iter 2976/3726 - loss 0.08450012 - time (sec): 377.33 - samples/sec: 434.72 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:12:21,618 epoch 2 - iter 3348/3726 - loss 0.08460079 - time (sec): 423.77 - samples/sec: 433.17 - lr: 0.000005 - momentum: 0.000000
2023-10-27 16:13:08,337 epoch 2 - iter 3720/3726 - loss 0.08261905 - time (sec): 470.48 - samples/sec: 434.27 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:13:09,112 ----------------------------------------------------------------------------------------------------
2023-10-27 16:13:09,112 EPOCH 2 done: loss 0.0825 - lr: 0.000004
2023-10-27 16:13:33,111 DEV : loss 0.08286476135253906 - f1-score (micro avg) 0.9546
2023-10-27 16:13:33,170 saving best model
2023-10-27 16:13:35,742 ----------------------------------------------------------------------------------------------------
2023-10-27 16:14:22,419 epoch 3 - iter 372/3726 - loss 0.05591265 - time (sec): 46.67 - samples/sec: 435.31 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:15:09,686 epoch 3 - iter 744/3726 - loss 0.05984730 - time (sec): 93.94 - samples/sec: 434.32 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:15:57,178 epoch 3 - iter 1116/3726 - loss 0.06005216 - time (sec): 141.43 - samples/sec: 435.00 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:16:45,692 epoch 3 - iter 1488/3726 - loss 0.05601000 - time (sec): 189.95 - samples/sec: 430.14 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:17:32,939 epoch 3 - iter 1860/3726 - loss 0.05476618 - time (sec): 237.20 - samples/sec: 426.95 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:18:20,145 epoch 3 - iter 2232/3726 - loss 0.05358297 - time (sec): 284.40 - samples/sec: 428.53 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:19:07,624 epoch 3 - iter 2604/3726 - loss 0.05384047 - time (sec): 331.88 - samples/sec: 429.32 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:19:54,617 epoch 3 - iter 2976/3726 - loss 0.05438530 - time (sec): 378.87 - samples/sec: 429.16 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:20:41,784 epoch 3 - iter 3348/3726 - loss 0.05364700 - time (sec): 426.04 - samples/sec: 430.25 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:21:28,928 epoch 3 - iter 3720/3726 - loss 0.05265148 - time (sec): 473.18 - samples/sec: 431.75 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:21:29,696 ----------------------------------------------------------------------------------------------------
2023-10-27 16:21:29,696 EPOCH 3 done: loss 0.0527 - lr: 0.000004
2023-10-27 16:21:53,630 DEV : loss 0.05983666330575943 - f1-score (micro avg) 0.963
2023-10-27 16:21:53,682 saving best model
2023-10-27 16:21:55,901 ----------------------------------------------------------------------------------------------------
2023-10-27 16:22:43,296 epoch 4 - iter 372/3726 - loss 0.03718873 - time (sec): 47.39 - samples/sec: 429.14 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:23:30,210 epoch 4 - iter 744/3726 - loss 0.04099485 - time (sec): 94.31 - samples/sec: 435.38 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:24:17,027 epoch 4 - iter 1116/3726 - loss 0.03721825 - time (sec): 141.12 - samples/sec: 434.73 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:25:04,504 epoch 4 - iter 1488/3726 - loss 0.03714011 - time (sec): 188.60 - samples/sec: 433.49 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:25:52,892 epoch 4 - iter 1860/3726 - loss 0.03758136 - time (sec): 236.99 - samples/sec: 428.95 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:26:40,944 epoch 4 - iter 2232/3726 - loss 0.03790295 - time (sec): 285.04 - samples/sec: 428.86 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:27:29,194 epoch 4 - iter 2604/3726 - loss 0.03805339 - time (sec): 333.29 - samples/sec: 428.62 - lr: 0.000004 - momentum: 0.000000
2023-10-27 16:28:16,189 epoch 4 - iter 2976/3726 - loss 0.03708819 - time (sec): 380.29 - samples/sec: 429.11 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:29:03,316 epoch 4 - iter 3348/3726 - loss 0.03680602 - time (sec): 427.41 - samples/sec: 429.64 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:29:50,404 epoch 4 - iter 3720/3726 - loss 0.03682622 - time (sec): 474.50 - samples/sec: 430.34 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:29:51,089 ----------------------------------------------------------------------------------------------------
2023-10-27 16:29:51,089 EPOCH 4 done: loss 0.0369 - lr: 0.000003
2023-10-27 16:30:14,916 DEV : loss 0.04883182421326637 - f1-score (micro avg) 0.9659
2023-10-27 16:30:14,971 saving best model
2023-10-27 16:30:17,459 ----------------------------------------------------------------------------------------------------
2023-10-27 16:31:04,080 epoch 5 - iter 372/3726 - loss 0.03340894 - time (sec): 46.62 - samples/sec: 441.00 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:31:50,991 epoch 5 - iter 744/3726 - loss 0.03438447 - time (sec): 93.53 - samples/sec: 439.30 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:32:38,716 epoch 5 - iter 1116/3726 - loss 0.03321367 - time (sec): 141.25 - samples/sec: 435.67 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:33:25,523 epoch 5 - iter 1488/3726 - loss 0.02824924 - time (sec): 188.06 - samples/sec: 435.61 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:34:12,201 epoch 5 - iter 1860/3726 - loss 0.02851437 - time (sec): 234.74 - samples/sec: 433.50 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:34:59,180 epoch 5 - iter 2232/3726 - loss 0.02789578 - time (sec): 281.72 - samples/sec: 436.78 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:35:46,777 epoch 5 - iter 2604/3726 - loss 0.02681236 - time (sec): 329.32 - samples/sec: 434.70 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:36:33,751 epoch 5 - iter 2976/3726 - loss 0.02765246 - time (sec): 376.29 - samples/sec: 432.28 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:37:20,836 epoch 5 - iter 3348/3726 - loss 0.02767176 - time (sec): 423.38 - samples/sec: 432.82 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:38:08,311 epoch 5 - iter 3720/3726 - loss 0.02792716 - time (sec): 470.85 - samples/sec: 433.69 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:38:09,077 ----------------------------------------------------------------------------------------------------
2023-10-27 16:38:09,077 EPOCH 5 done: loss 0.0279 - lr: 0.000003
2023-10-27 16:38:33,913 DEV : loss 0.05045438930392265 - f1-score (micro avg) 0.9709
2023-10-27 16:38:33,966 saving best model
2023-10-27 16:38:36,347 ----------------------------------------------------------------------------------------------------
2023-10-27 16:39:23,511 epoch 6 - iter 372/3726 - loss 0.02592894 - time (sec): 47.15 - samples/sec: 418.65 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:40:10,156 epoch 6 - iter 744/3726 - loss 0.02441091 - time (sec): 93.80 - samples/sec: 435.34 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:40:56,462 epoch 6 - iter 1116/3726 - loss 0.02083566 - time (sec): 140.10 - samples/sec: 437.89 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:41:42,045 epoch 6 - iter 1488/3726 - loss 0.01995447 - time (sec): 185.69 - samples/sec: 441.22 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:42:28,231 epoch 6 - iter 1860/3726 - loss 0.01971121 - time (sec): 231.87 - samples/sec: 442.59 - lr: 0.000003 - momentum: 0.000000
2023-10-27 16:43:13,863 epoch 6 - iter 2232/3726 - loss 0.02038473 - time (sec): 277.50 - samples/sec: 442.07 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:43:59,052 epoch 6 - iter 2604/3726 - loss 0.02010731 - time (sec): 322.69 - samples/sec: 442.05 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:44:44,618 epoch 6 - iter 2976/3726 - loss 0.02110678 - time (sec): 368.26 - samples/sec: 443.32 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:45:30,589 epoch 6 - iter 3348/3726 - loss 0.02064377 - time (sec): 414.23 - samples/sec: 443.27 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:46:15,877 epoch 6 - iter 3720/3726 - loss 0.02070977 - time (sec): 459.52 - samples/sec: 444.64 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:46:16,609 ----------------------------------------------------------------------------------------------------
2023-10-27 16:46:16,609 EPOCH 6 done: loss 0.0207 - lr: 0.000002
2023-10-27 16:46:39,599 DEV : loss 0.05228659138083458 - f1-score (micro avg) 0.9688
2023-10-27 16:46:39,652 ----------------------------------------------------------------------------------------------------
2023-10-27 16:47:25,815 epoch 7 - iter 372/3726 - loss 0.01393066 - time (sec): 46.16 - samples/sec: 453.87 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:48:11,032 epoch 7 - iter 744/3726 - loss 0.01975985 - time (sec): 91.38 - samples/sec: 465.32 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:48:57,003 epoch 7 - iter 1116/3726 - loss 0.01736626 - time (sec): 137.35 - samples/sec: 453.61 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:49:42,670 epoch 7 - iter 1488/3726 - loss 0.01602877 - time (sec): 183.02 - samples/sec: 449.60 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:50:28,056 epoch 7 - iter 1860/3726 - loss 0.01614250 - time (sec): 228.40 - samples/sec: 448.54 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:51:13,857 epoch 7 - iter 2232/3726 - loss 0.01731041 - time (sec): 274.20 - samples/sec: 447.20 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:51:59,472 epoch 7 - iter 2604/3726 - loss 0.01639037 - time (sec): 319.82 - samples/sec: 447.95 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:52:45,630 epoch 7 - iter 2976/3726 - loss 0.01622162 - time (sec): 365.98 - samples/sec: 446.28 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:53:30,732 epoch 7 - iter 3348/3726 - loss 0.01590288 - time (sec): 411.08 - samples/sec: 447.75 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:54:16,747 epoch 7 - iter 3720/3726 - loss 0.01577280 - time (sec): 457.09 - samples/sec: 446.76 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:54:17,443 ----------------------------------------------------------------------------------------------------
2023-10-27 16:54:17,443 EPOCH 7 done: loss 0.0157 - lr: 0.000002
2023-10-27 16:54:39,633 DEV : loss 0.05249254032969475 - f1-score (micro avg) 0.9716
2023-10-27 16:54:39,686 saving best model
2023-10-27 16:54:42,796 ----------------------------------------------------------------------------------------------------
2023-10-27 16:55:28,427 epoch 8 - iter 372/3726 - loss 0.01008978 - time (sec): 45.63 - samples/sec: 447.29 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:56:13,841 epoch 8 - iter 744/3726 - loss 0.00993689 - time (sec): 91.04 - samples/sec: 445.29 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:56:59,449 epoch 8 - iter 1116/3726 - loss 0.00840825 - time (sec): 136.65 - samples/sec: 443.14 - lr: 0.000002 - momentum: 0.000000
2023-10-27 16:57:45,482 epoch 8 - iter 1488/3726 - loss 0.00783549 - time (sec): 182.68 - samples/sec: 441.32 - lr: 0.000001 - momentum: 0.000000
2023-10-27 16:58:31,635 epoch 8 - iter 1860/3726 - loss 0.00875476 - time (sec): 228.84 - samples/sec: 441.43 - lr: 0.000001 - momentum: 0.000000
2023-10-27 16:59:17,304 epoch 8 - iter 2232/3726 - loss 0.00997788 - time (sec): 274.51 - samples/sec: 447.12 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:00:03,903 epoch 8 - iter 2604/3726 - loss 0.01002162 - time (sec): 321.10 - samples/sec: 445.17 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:00:49,795 epoch 8 - iter 2976/3726 - loss 0.00982956 - time (sec): 367.00 - samples/sec: 443.07 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:01:35,384 epoch 8 - iter 3348/3726 - loss 0.01006193 - time (sec): 412.59 - samples/sec: 445.05 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:02:21,065 epoch 8 - iter 3720/3726 - loss 0.01018978 - time (sec): 458.27 - samples/sec: 445.76 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:02:21,762 ----------------------------------------------------------------------------------------------------
2023-10-27 17:02:21,762 EPOCH 8 done: loss 0.0102 - lr: 0.000001
2023-10-27 17:02:44,780 DEV : loss 0.05600257217884064 - f1-score (micro avg) 0.9717
2023-10-27 17:02:44,832 saving best model
2023-10-27 17:02:47,541 ----------------------------------------------------------------------------------------------------
2023-10-27 17:03:33,194 epoch 9 - iter 372/3726 - loss 0.00852829 - time (sec): 45.65 - samples/sec: 446.98 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:04:18,797 epoch 9 - iter 744/3726 - loss 0.01209549 - time (sec): 91.25 - samples/sec: 442.36 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:05:04,412 epoch 9 - iter 1116/3726 - loss 0.01171120 - time (sec): 136.87 - samples/sec: 446.88 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:05:49,939 epoch 9 - iter 1488/3726 - loss 0.01104234 - time (sec): 182.39 - samples/sec: 448.01 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:06:35,656 epoch 9 - iter 1860/3726 - loss 0.01095518 - time (sec): 228.11 - samples/sec: 444.74 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:07:21,859 epoch 9 - iter 2232/3726 - loss 0.01041938 - time (sec): 274.31 - samples/sec: 445.26 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:08:07,175 epoch 9 - iter 2604/3726 - loss 0.01077364 - time (sec): 319.63 - samples/sec: 446.97 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:08:52,206 epoch 9 - iter 2976/3726 - loss 0.01011920 - time (sec): 364.66 - samples/sec: 448.47 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:09:37,411 epoch 9 - iter 3348/3726 - loss 0.00960798 - time (sec): 409.87 - samples/sec: 448.71 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:10:23,015 epoch 9 - iter 3720/3726 - loss 0.00963949 - time (sec): 455.47 - samples/sec: 448.69 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:10:23,789 ----------------------------------------------------------------------------------------------------
2023-10-27 17:10:23,789 EPOCH 9 done: loss 0.0096 - lr: 0.000001
2023-10-27 17:10:47,419 DEV : loss 0.053138185292482376 - f1-score (micro avg) 0.9726
2023-10-27 17:10:47,471 saving best model
2023-10-27 17:10:50,135 ----------------------------------------------------------------------------------------------------
2023-10-27 17:11:35,418 epoch 10 - iter 372/3726 - loss 0.00478465 - time (sec): 45.28 - samples/sec: 451.34 - lr: 0.000001 - momentum: 0.000000
2023-10-27 17:12:21,078 epoch 10 - iter 744/3726 - loss 0.00483843 - time (sec): 90.94 - samples/sec: 449.97 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:13:06,334 epoch 10 - iter 1116/3726 - loss 0.00472956 - time (sec): 136.20 - samples/sec: 449.54 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:13:51,612 epoch 10 - iter 1488/3726 - loss 0.00451912 - time (sec): 181.47 - samples/sec: 451.84 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:14:37,168 epoch 10 - iter 1860/3726 - loss 0.00470044 - time (sec): 227.03 - samples/sec: 451.55 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:15:22,745 epoch 10 - iter 2232/3726 - loss 0.00497575 - time (sec): 272.61 - samples/sec: 452.99 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:16:08,737 epoch 10 - iter 2604/3726 - loss 0.00499748 - time (sec): 318.60 - samples/sec: 450.83 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:16:54,804 epoch 10 - iter 2976/3726 - loss 0.00512330 - time (sec): 364.67 - samples/sec: 450.17 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:17:40,016 epoch 10 - iter 3348/3726 - loss 0.00514967 - time (sec): 409.88 - samples/sec: 449.74 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:18:25,574 epoch 10 - iter 3720/3726 - loss 0.00505541 - time (sec): 455.44 - samples/sec: 448.55 - lr: 0.000000 - momentum: 0.000000
2023-10-27 17:18:26,331 ----------------------------------------------------------------------------------------------------
2023-10-27 17:18:26,331 EPOCH 10 done: loss 0.0051 - lr: 0.000000
2023-10-27 17:18:49,314 DEV : loss 0.05512790009379387 - f1-score (micro avg) 0.9722
2023-10-27 17:18:51,313 ----------------------------------------------------------------------------------------------------
2023-10-27 17:18:51,315 Loading model from best epoch ...
2023-10-27 17:18:58,497 SequenceTagger predicts: Dictionary with 17 tags: O, S-ORG, B-ORG, E-ORG, I-ORG, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-MISC, B-MISC, E-MISC, I-MISC
2023-10-27 17:19:21,159
Results:
- F-score (micro) 0.969
- F-score (macro) 0.9632
- Accuracy 0.9558
By class:
precision recall f1-score support
ORG 0.9676 0.9691 0.9683 1909
PER 0.9956 0.9943 0.9950 1591
LOC 0.9756 0.9625 0.9690 1413
MISC 0.9019 0.9397 0.9204 812
micro avg 0.9676 0.9703 0.9690 5725
macro avg 0.9602 0.9664 0.9632 5725
weighted avg 0.9680 0.9703 0.9691 5725
2023-10-27 17:19:21,160 ----------------------------------------------------------------------------------------------------