Upload ./training.log with huggingface_hub
Browse files- training.log +267 -0
training.log
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 10:15:43,560 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 10:15:43,560 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(31103, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 10:15:43,560 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 10:15:43,560 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 10:15:43,560 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 10:15:43,560 Train: 758 sentences
|
54 |
+
2024-03-26 10:15:43,560 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 10:15:43,560 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 10:15:43,560 Training Params:
|
57 |
+
2024-03-26 10:15:43,560 - learning_rate: "3e-05"
|
58 |
+
2024-03-26 10:15:43,560 - mini_batch_size: "16"
|
59 |
+
2024-03-26 10:15:43,560 - max_epochs: "10"
|
60 |
+
2024-03-26 10:15:43,560 - shuffle: "True"
|
61 |
+
2024-03-26 10:15:43,560 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 10:15:43,560 Plugins:
|
63 |
+
2024-03-26 10:15:43,561 - TensorboardLogger
|
64 |
+
2024-03-26 10:15:43,561 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 10:15:43,561 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 10:15:43,561 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 10:15:43,561 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 10:15:43,561 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 10:15:43,561 Computation:
|
70 |
+
2024-03-26 10:15:43,561 - compute on device: cuda:0
|
71 |
+
2024-03-26 10:15:43,561 - embedding storage: none
|
72 |
+
2024-03-26 10:15:43,561 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 10:15:43,561 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-4"
|
74 |
+
2024-03-26 10:15:43,561 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 10:15:43,561 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 10:15:43,561 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 10:15:45,022 epoch 1 - iter 4/48 - loss 3.33606037 - time (sec): 1.46 - samples/sec: 1786.73 - lr: 0.000002 - momentum: 0.000000
|
78 |
+
2024-03-26 10:15:46,837 epoch 1 - iter 8/48 - loss 3.28043995 - time (sec): 3.28 - samples/sec: 1563.83 - lr: 0.000004 - momentum: 0.000000
|
79 |
+
2024-03-26 10:15:48,161 epoch 1 - iter 12/48 - loss 3.18154181 - time (sec): 4.60 - samples/sec: 1587.29 - lr: 0.000007 - momentum: 0.000000
|
80 |
+
2024-03-26 10:15:50,702 epoch 1 - iter 16/48 - loss 2.99682926 - time (sec): 7.14 - samples/sec: 1498.23 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2024-03-26 10:15:52,809 epoch 1 - iter 20/48 - loss 2.86564017 - time (sec): 9.25 - samples/sec: 1481.19 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2024-03-26 10:15:55,477 epoch 1 - iter 24/48 - loss 2.71552302 - time (sec): 11.92 - samples/sec: 1420.36 - lr: 0.000014 - momentum: 0.000000
|
83 |
+
2024-03-26 10:15:57,959 epoch 1 - iter 28/48 - loss 2.59674920 - time (sec): 14.40 - samples/sec: 1408.98 - lr: 0.000017 - momentum: 0.000000
|
84 |
+
2024-03-26 10:15:59,832 epoch 1 - iter 32/48 - loss 2.50531239 - time (sec): 16.27 - samples/sec: 1405.82 - lr: 0.000019 - momentum: 0.000000
|
85 |
+
2024-03-26 10:16:00,713 epoch 1 - iter 36/48 - loss 2.43592440 - time (sec): 17.15 - samples/sec: 1456.40 - lr: 0.000022 - momentum: 0.000000
|
86 |
+
2024-03-26 10:16:02,569 epoch 1 - iter 40/48 - loss 2.34208452 - time (sec): 19.01 - samples/sec: 1465.32 - lr: 0.000024 - momentum: 0.000000
|
87 |
+
2024-03-26 10:16:04,586 epoch 1 - iter 44/48 - loss 2.23846575 - time (sec): 21.02 - samples/sec: 1485.36 - lr: 0.000027 - momentum: 0.000000
|
88 |
+
2024-03-26 10:16:06,292 epoch 1 - iter 48/48 - loss 2.15856647 - time (sec): 22.73 - samples/sec: 1516.53 - lr: 0.000029 - momentum: 0.000000
|
89 |
+
2024-03-26 10:16:06,292 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 10:16:06,292 EPOCH 1 done: loss 2.1586 - lr: 0.000029
|
91 |
+
2024-03-26 10:16:07,099 DEV : loss 0.8691769242286682 - f1-score (micro avg) 0.3937
|
92 |
+
2024-03-26 10:16:07,100 saving best model
|
93 |
+
2024-03-26 10:16:07,381 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 10:16:08,612 epoch 2 - iter 4/48 - loss 1.18353349 - time (sec): 1.23 - samples/sec: 1924.87 - lr: 0.000030 - momentum: 0.000000
|
95 |
+
2024-03-26 10:16:10,851 epoch 2 - iter 8/48 - loss 0.99048634 - time (sec): 3.47 - samples/sec: 1572.73 - lr: 0.000030 - momentum: 0.000000
|
96 |
+
2024-03-26 10:16:12,631 epoch 2 - iter 12/48 - loss 0.94829107 - time (sec): 5.25 - samples/sec: 1623.34 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2024-03-26 10:16:15,015 epoch 2 - iter 16/48 - loss 0.86335015 - time (sec): 7.63 - samples/sec: 1478.02 - lr: 0.000029 - momentum: 0.000000
|
98 |
+
2024-03-26 10:16:18,426 epoch 2 - iter 20/48 - loss 0.78901466 - time (sec): 11.04 - samples/sec: 1335.95 - lr: 0.000029 - momentum: 0.000000
|
99 |
+
2024-03-26 10:16:19,906 epoch 2 - iter 24/48 - loss 0.77282323 - time (sec): 12.52 - samples/sec: 1392.74 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2024-03-26 10:16:22,559 epoch 2 - iter 28/48 - loss 0.74398129 - time (sec): 15.18 - samples/sec: 1364.18 - lr: 0.000028 - momentum: 0.000000
|
101 |
+
2024-03-26 10:16:25,258 epoch 2 - iter 32/48 - loss 0.71068818 - time (sec): 17.88 - samples/sec: 1365.43 - lr: 0.000028 - momentum: 0.000000
|
102 |
+
2024-03-26 10:16:27,337 epoch 2 - iter 36/48 - loss 0.69857610 - time (sec): 19.96 - samples/sec: 1355.18 - lr: 0.000028 - momentum: 0.000000
|
103 |
+
2024-03-26 10:16:29,805 epoch 2 - iter 40/48 - loss 0.67325179 - time (sec): 22.42 - samples/sec: 1346.07 - lr: 0.000027 - momentum: 0.000000
|
104 |
+
2024-03-26 10:16:30,853 epoch 2 - iter 44/48 - loss 0.66012014 - time (sec): 23.47 - samples/sec: 1381.45 - lr: 0.000027 - momentum: 0.000000
|
105 |
+
2024-03-26 10:16:32,008 epoch 2 - iter 48/48 - loss 0.64582622 - time (sec): 24.63 - samples/sec: 1399.82 - lr: 0.000027 - momentum: 0.000000
|
106 |
+
2024-03-26 10:16:32,008 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 10:16:32,008 EPOCH 2 done: loss 0.6458 - lr: 0.000027
|
108 |
+
2024-03-26 10:16:32,902 DEV : loss 0.3441326320171356 - f1-score (micro avg) 0.7893
|
109 |
+
2024-03-26 10:16:32,904 saving best model
|
110 |
+
2024-03-26 10:16:33,379 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 10:16:35,456 epoch 3 - iter 4/48 - loss 0.38138387 - time (sec): 2.08 - samples/sec: 1183.00 - lr: 0.000026 - momentum: 0.000000
|
112 |
+
2024-03-26 10:16:37,001 epoch 3 - iter 8/48 - loss 0.33198739 - time (sec): 3.62 - samples/sec: 1323.41 - lr: 0.000026 - momentum: 0.000000
|
113 |
+
2024-03-26 10:16:39,563 epoch 3 - iter 12/48 - loss 0.33511209 - time (sec): 6.18 - samples/sec: 1258.61 - lr: 0.000026 - momentum: 0.000000
|
114 |
+
2024-03-26 10:16:41,567 epoch 3 - iter 16/48 - loss 0.33306197 - time (sec): 8.19 - samples/sec: 1302.69 - lr: 0.000026 - momentum: 0.000000
|
115 |
+
2024-03-26 10:16:43,445 epoch 3 - iter 20/48 - loss 0.33037874 - time (sec): 10.06 - samples/sec: 1375.67 - lr: 0.000025 - momentum: 0.000000
|
116 |
+
2024-03-26 10:16:45,656 epoch 3 - iter 24/48 - loss 0.32391011 - time (sec): 12.27 - samples/sec: 1392.80 - lr: 0.000025 - momentum: 0.000000
|
117 |
+
2024-03-26 10:16:48,105 epoch 3 - iter 28/48 - loss 0.31328468 - time (sec): 14.72 - samples/sec: 1354.65 - lr: 0.000025 - momentum: 0.000000
|
118 |
+
2024-03-26 10:16:50,640 epoch 3 - iter 32/48 - loss 0.30770160 - time (sec): 17.26 - samples/sec: 1332.24 - lr: 0.000025 - momentum: 0.000000
|
119 |
+
2024-03-26 10:16:52,737 epoch 3 - iter 36/48 - loss 0.30585269 - time (sec): 19.36 - samples/sec: 1337.44 - lr: 0.000024 - momentum: 0.000000
|
120 |
+
2024-03-26 10:16:55,028 epoch 3 - iter 40/48 - loss 0.30995459 - time (sec): 21.65 - samples/sec: 1353.84 - lr: 0.000024 - momentum: 0.000000
|
121 |
+
2024-03-26 10:16:57,547 epoch 3 - iter 44/48 - loss 0.30188412 - time (sec): 24.17 - samples/sec: 1336.95 - lr: 0.000024 - momentum: 0.000000
|
122 |
+
2024-03-26 10:16:59,044 epoch 3 - iter 48/48 - loss 0.30424410 - time (sec): 25.66 - samples/sec: 1343.29 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2024-03-26 10:16:59,044 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 10:16:59,044 EPOCH 3 done: loss 0.3042 - lr: 0.000023
|
125 |
+
2024-03-26 10:16:59,951 DEV : loss 0.24834905564785004 - f1-score (micro avg) 0.8417
|
126 |
+
2024-03-26 10:16:59,952 saving best model
|
127 |
+
2024-03-26 10:17:00,388 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 10:17:03,381 epoch 4 - iter 4/48 - loss 0.16357798 - time (sec): 2.99 - samples/sec: 1218.46 - lr: 0.000023 - momentum: 0.000000
|
129 |
+
2024-03-26 10:17:04,675 epoch 4 - iter 8/48 - loss 0.19203458 - time (sec): 4.28 - samples/sec: 1372.52 - lr: 0.000023 - momentum: 0.000000
|
130 |
+
2024-03-26 10:17:06,741 epoch 4 - iter 12/48 - loss 0.20034927 - time (sec): 6.35 - samples/sec: 1452.34 - lr: 0.000023 - momentum: 0.000000
|
131 |
+
2024-03-26 10:17:09,275 epoch 4 - iter 16/48 - loss 0.19820873 - time (sec): 8.88 - samples/sec: 1371.25 - lr: 0.000022 - momentum: 0.000000
|
132 |
+
2024-03-26 10:17:10,256 epoch 4 - iter 20/48 - loss 0.19764534 - time (sec): 9.87 - samples/sec: 1455.96 - lr: 0.000022 - momentum: 0.000000
|
133 |
+
2024-03-26 10:17:11,638 epoch 4 - iter 24/48 - loss 0.20056094 - time (sec): 11.25 - samples/sec: 1502.68 - lr: 0.000022 - momentum: 0.000000
|
134 |
+
2024-03-26 10:17:14,733 epoch 4 - iter 28/48 - loss 0.19142315 - time (sec): 14.34 - samples/sec: 1407.17 - lr: 0.000022 - momentum: 0.000000
|
135 |
+
2024-03-26 10:17:17,197 epoch 4 - iter 32/48 - loss 0.20173939 - time (sec): 16.81 - samples/sec: 1399.26 - lr: 0.000021 - momentum: 0.000000
|
136 |
+
2024-03-26 10:17:18,705 epoch 4 - iter 36/48 - loss 0.20107167 - time (sec): 18.32 - samples/sec: 1434.77 - lr: 0.000021 - momentum: 0.000000
|
137 |
+
2024-03-26 10:17:20,679 epoch 4 - iter 40/48 - loss 0.19651999 - time (sec): 20.29 - samples/sec: 1449.07 - lr: 0.000021 - momentum: 0.000000
|
138 |
+
2024-03-26 10:17:22,559 epoch 4 - iter 44/48 - loss 0.19276541 - time (sec): 22.17 - samples/sec: 1463.05 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2024-03-26 10:17:23,594 epoch 4 - iter 48/48 - loss 0.19451533 - time (sec): 23.20 - samples/sec: 1485.60 - lr: 0.000020 - momentum: 0.000000
|
140 |
+
2024-03-26 10:17:23,594 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 10:17:23,594 EPOCH 4 done: loss 0.1945 - lr: 0.000020
|
142 |
+
2024-03-26 10:17:24,489 DEV : loss 0.21226930618286133 - f1-score (micro avg) 0.8725
|
143 |
+
2024-03-26 10:17:24,490 saving best model
|
144 |
+
2024-03-26 10:17:24,914 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 10:17:25,970 epoch 5 - iter 4/48 - loss 0.22900511 - time (sec): 1.05 - samples/sec: 2412.52 - lr: 0.000020 - momentum: 0.000000
|
146 |
+
2024-03-26 10:17:27,831 epoch 5 - iter 8/48 - loss 0.20745093 - time (sec): 2.92 - samples/sec: 1777.12 - lr: 0.000020 - momentum: 0.000000
|
147 |
+
2024-03-26 10:17:29,928 epoch 5 - iter 12/48 - loss 0.19394759 - time (sec): 5.01 - samples/sec: 1596.67 - lr: 0.000019 - momentum: 0.000000
|
148 |
+
2024-03-26 10:17:32,188 epoch 5 - iter 16/48 - loss 0.17919168 - time (sec): 7.27 - samples/sec: 1525.06 - lr: 0.000019 - momentum: 0.000000
|
149 |
+
2024-03-26 10:17:34,431 epoch 5 - iter 20/48 - loss 0.17309969 - time (sec): 9.52 - samples/sec: 1438.12 - lr: 0.000019 - momentum: 0.000000
|
150 |
+
2024-03-26 10:17:36,589 epoch 5 - iter 24/48 - loss 0.16467634 - time (sec): 11.67 - samples/sec: 1455.52 - lr: 0.000018 - momentum: 0.000000
|
151 |
+
2024-03-26 10:17:38,184 epoch 5 - iter 28/48 - loss 0.16079508 - time (sec): 13.27 - samples/sec: 1483.39 - lr: 0.000018 - momentum: 0.000000
|
152 |
+
2024-03-26 10:17:40,278 epoch 5 - iter 32/48 - loss 0.15041135 - time (sec): 15.36 - samples/sec: 1503.84 - lr: 0.000018 - momentum: 0.000000
|
153 |
+
2024-03-26 10:17:41,672 epoch 5 - iter 36/48 - loss 0.14767635 - time (sec): 16.76 - samples/sec: 1527.72 - lr: 0.000018 - momentum: 0.000000
|
154 |
+
2024-03-26 10:17:44,219 epoch 5 - iter 40/48 - loss 0.14147108 - time (sec): 19.30 - samples/sec: 1493.43 - lr: 0.000017 - momentum: 0.000000
|
155 |
+
2024-03-26 10:17:47,159 epoch 5 - iter 44/48 - loss 0.13978631 - time (sec): 22.24 - samples/sec: 1439.87 - lr: 0.000017 - momentum: 0.000000
|
156 |
+
2024-03-26 10:17:48,665 epoch 5 - iter 48/48 - loss 0.14191100 - time (sec): 23.75 - samples/sec: 1451.53 - lr: 0.000017 - momentum: 0.000000
|
157 |
+
2024-03-26 10:17:48,665 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 10:17:48,665 EPOCH 5 done: loss 0.1419 - lr: 0.000017
|
159 |
+
2024-03-26 10:17:49,581 DEV : loss 0.17432889342308044 - f1-score (micro avg) 0.8924
|
160 |
+
2024-03-26 10:17:49,583 saving best model
|
161 |
+
2024-03-26 10:17:50,029 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 10:17:51,893 epoch 6 - iter 4/48 - loss 0.14473226 - time (sec): 1.86 - samples/sec: 1578.61 - lr: 0.000017 - momentum: 0.000000
|
163 |
+
2024-03-26 10:17:53,612 epoch 6 - iter 8/48 - loss 0.12456982 - time (sec): 3.58 - samples/sec: 1618.91 - lr: 0.000016 - momentum: 0.000000
|
164 |
+
2024-03-26 10:17:55,912 epoch 6 - iter 12/48 - loss 0.12108378 - time (sec): 5.88 - samples/sec: 1499.33 - lr: 0.000016 - momentum: 0.000000
|
165 |
+
2024-03-26 10:17:57,476 epoch 6 - iter 16/48 - loss 0.11264219 - time (sec): 7.44 - samples/sec: 1522.01 - lr: 0.000016 - momentum: 0.000000
|
166 |
+
2024-03-26 10:18:00,033 epoch 6 - iter 20/48 - loss 0.10247223 - time (sec): 10.00 - samples/sec: 1436.35 - lr: 0.000015 - momentum: 0.000000
|
167 |
+
2024-03-26 10:18:02,087 epoch 6 - iter 24/48 - loss 0.10312786 - time (sec): 12.06 - samples/sec: 1450.74 - lr: 0.000015 - momentum: 0.000000
|
168 |
+
2024-03-26 10:18:04,714 epoch 6 - iter 28/48 - loss 0.10393896 - time (sec): 14.68 - samples/sec: 1425.71 - lr: 0.000015 - momentum: 0.000000
|
169 |
+
2024-03-26 10:18:06,764 epoch 6 - iter 32/48 - loss 0.10212557 - time (sec): 16.73 - samples/sec: 1404.50 - lr: 0.000015 - momentum: 0.000000
|
170 |
+
2024-03-26 10:18:07,864 epoch 6 - iter 36/48 - loss 0.10345036 - time (sec): 17.83 - samples/sec: 1454.68 - lr: 0.000014 - momentum: 0.000000
|
171 |
+
2024-03-26 10:18:10,059 epoch 6 - iter 40/48 - loss 0.10498644 - time (sec): 20.03 - samples/sec: 1443.81 - lr: 0.000014 - momentum: 0.000000
|
172 |
+
2024-03-26 10:18:11,667 epoch 6 - iter 44/48 - loss 0.10975459 - time (sec): 21.64 - samples/sec: 1467.53 - lr: 0.000014 - momentum: 0.000000
|
173 |
+
2024-03-26 10:18:13,439 epoch 6 - iter 48/48 - loss 0.10750133 - time (sec): 23.41 - samples/sec: 1472.63 - lr: 0.000014 - momentum: 0.000000
|
174 |
+
2024-03-26 10:18:13,440 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 10:18:13,440 EPOCH 6 done: loss 0.1075 - lr: 0.000014
|
176 |
+
2024-03-26 10:18:14,342 DEV : loss 0.16816526651382446 - f1-score (micro avg) 0.8996
|
177 |
+
2024-03-26 10:18:14,344 saving best model
|
178 |
+
2024-03-26 10:18:14,755 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-26 10:18:16,361 epoch 7 - iter 4/48 - loss 0.09156530 - time (sec): 1.61 - samples/sec: 1743.14 - lr: 0.000013 - momentum: 0.000000
|
180 |
+
2024-03-26 10:18:18,453 epoch 7 - iter 8/48 - loss 0.07762594 - time (sec): 3.70 - samples/sec: 1655.21 - lr: 0.000013 - momentum: 0.000000
|
181 |
+
2024-03-26 10:18:20,673 epoch 7 - iter 12/48 - loss 0.07628831 - time (sec): 5.92 - samples/sec: 1488.77 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2024-03-26 10:18:21,840 epoch 7 - iter 16/48 - loss 0.08639863 - time (sec): 7.08 - samples/sec: 1588.88 - lr: 0.000012 - momentum: 0.000000
|
183 |
+
2024-03-26 10:18:23,946 epoch 7 - iter 20/48 - loss 0.08684581 - time (sec): 9.19 - samples/sec: 1560.88 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2024-03-26 10:18:25,446 epoch 7 - iter 24/48 - loss 0.08404483 - time (sec): 10.69 - samples/sec: 1610.09 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2024-03-26 10:18:27,540 epoch 7 - iter 28/48 - loss 0.08184808 - time (sec): 12.78 - samples/sec: 1570.22 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2024-03-26 10:18:30,297 epoch 7 - iter 32/48 - loss 0.08200584 - time (sec): 15.54 - samples/sec: 1498.51 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2024-03-26 10:18:32,241 epoch 7 - iter 36/48 - loss 0.08034921 - time (sec): 17.49 - samples/sec: 1500.73 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2024-03-26 10:18:33,354 epoch 7 - iter 40/48 - loss 0.08407326 - time (sec): 18.60 - samples/sec: 1532.40 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2024-03-26 10:18:35,939 epoch 7 - iter 44/48 - loss 0.08503551 - time (sec): 21.18 - samples/sec: 1513.53 - lr: 0.000010 - momentum: 0.000000
|
190 |
+
2024-03-26 10:18:37,041 epoch 7 - iter 48/48 - loss 0.08657468 - time (sec): 22.28 - samples/sec: 1546.88 - lr: 0.000010 - momentum: 0.000000
|
191 |
+
2024-03-26 10:18:37,041 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 10:18:37,041 EPOCH 7 done: loss 0.0866 - lr: 0.000010
|
193 |
+
2024-03-26 10:18:37,939 DEV : loss 0.18013019859790802 - f1-score (micro avg) 0.9053
|
194 |
+
2024-03-26 10:18:37,940 saving best model
|
195 |
+
2024-03-26 10:18:38,380 ----------------------------------------------------------------------------------------------------
|
196 |
+
2024-03-26 10:18:40,490 epoch 8 - iter 4/48 - loss 0.05940590 - time (sec): 2.11 - samples/sec: 1314.77 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2024-03-26 10:18:43,093 epoch 8 - iter 8/48 - loss 0.05066426 - time (sec): 4.71 - samples/sec: 1281.95 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2024-03-26 10:18:44,741 epoch 8 - iter 12/48 - loss 0.05202001 - time (sec): 6.36 - samples/sec: 1333.67 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2024-03-26 10:18:47,332 epoch 8 - iter 16/48 - loss 0.06461025 - time (sec): 8.95 - samples/sec: 1286.28 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2024-03-26 10:18:48,957 epoch 8 - iter 20/48 - loss 0.06519928 - time (sec): 10.57 - samples/sec: 1343.58 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2024-03-26 10:18:50,408 epoch 8 - iter 24/48 - loss 0.07047337 - time (sec): 12.03 - samples/sec: 1413.48 - lr: 0.000009 - momentum: 0.000000
|
202 |
+
2024-03-26 10:18:52,258 epoch 8 - iter 28/48 - loss 0.07587165 - time (sec): 13.88 - samples/sec: 1437.19 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2024-03-26 10:18:54,884 epoch 8 - iter 32/48 - loss 0.07553527 - time (sec): 16.50 - samples/sec: 1423.63 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2024-03-26 10:18:57,265 epoch 8 - iter 36/48 - loss 0.07533218 - time (sec): 18.88 - samples/sec: 1415.70 - lr: 0.000008 - momentum: 0.000000
|
205 |
+
2024-03-26 10:18:59,444 epoch 8 - iter 40/48 - loss 0.07539987 - time (sec): 21.06 - samples/sec: 1396.95 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2024-03-26 10:19:01,664 epoch 8 - iter 44/48 - loss 0.07328438 - time (sec): 23.28 - samples/sec: 1387.55 - lr: 0.000007 - momentum: 0.000000
|
207 |
+
2024-03-26 10:19:03,207 epoch 8 - iter 48/48 - loss 0.07364478 - time (sec): 24.83 - samples/sec: 1388.59 - lr: 0.000007 - momentum: 0.000000
|
208 |
+
2024-03-26 10:19:03,208 ----------------------------------------------------------------------------------------------------
|
209 |
+
2024-03-26 10:19:03,208 EPOCH 8 done: loss 0.0736 - lr: 0.000007
|
210 |
+
2024-03-26 10:19:04,106 DEV : loss 0.16676065325737 - f1-score (micro avg) 0.9158
|
211 |
+
2024-03-26 10:19:04,107 saving best model
|
212 |
+
2024-03-26 10:19:04,540 ----------------------------------------------------------------------------------------------------
|
213 |
+
2024-03-26 10:19:06,396 epoch 9 - iter 4/48 - loss 0.07456918 - time (sec): 1.85 - samples/sec: 1557.74 - lr: 0.000007 - momentum: 0.000000
|
214 |
+
2024-03-26 10:19:09,537 epoch 9 - iter 8/48 - loss 0.07242803 - time (sec): 4.99 - samples/sec: 1260.29 - lr: 0.000006 - momentum: 0.000000
|
215 |
+
2024-03-26 10:19:11,171 epoch 9 - iter 12/48 - loss 0.06181526 - time (sec): 6.63 - samples/sec: 1304.71 - lr: 0.000006 - momentum: 0.000000
|
216 |
+
2024-03-26 10:19:13,041 epoch 9 - iter 16/48 - loss 0.06839209 - time (sec): 8.50 - samples/sec: 1345.05 - lr: 0.000006 - momentum: 0.000000
|
217 |
+
2024-03-26 10:19:15,912 epoch 9 - iter 20/48 - loss 0.06071099 - time (sec): 11.37 - samples/sec: 1306.30 - lr: 0.000006 - momentum: 0.000000
|
218 |
+
2024-03-26 10:19:17,437 epoch 9 - iter 24/48 - loss 0.06069450 - time (sec): 12.90 - samples/sec: 1353.07 - lr: 0.000005 - momentum: 0.000000
|
219 |
+
2024-03-26 10:19:19,370 epoch 9 - iter 28/48 - loss 0.06366137 - time (sec): 14.83 - samples/sec: 1377.70 - lr: 0.000005 - momentum: 0.000000
|
220 |
+
2024-03-26 10:19:21,689 epoch 9 - iter 32/48 - loss 0.06159224 - time (sec): 17.15 - samples/sec: 1354.78 - lr: 0.000005 - momentum: 0.000000
|
221 |
+
2024-03-26 10:19:22,986 epoch 9 - iter 36/48 - loss 0.06577623 - time (sec): 18.44 - samples/sec: 1385.96 - lr: 0.000004 - momentum: 0.000000
|
222 |
+
2024-03-26 10:19:26,188 epoch 9 - iter 40/48 - loss 0.06302902 - time (sec): 21.65 - samples/sec: 1336.88 - lr: 0.000004 - momentum: 0.000000
|
223 |
+
2024-03-26 10:19:28,302 epoch 9 - iter 44/48 - loss 0.06043263 - time (sec): 23.76 - samples/sec: 1359.42 - lr: 0.000004 - momentum: 0.000000
|
224 |
+
2024-03-26 10:19:29,289 epoch 9 - iter 48/48 - loss 0.06250231 - time (sec): 24.75 - samples/sec: 1393.01 - lr: 0.000004 - momentum: 0.000000
|
225 |
+
2024-03-26 10:19:29,289 ----------------------------------------------------------------------------------------------------
|
226 |
+
2024-03-26 10:19:29,289 EPOCH 9 done: loss 0.0625 - lr: 0.000004
|
227 |
+
2024-03-26 10:19:30,191 DEV : loss 0.15200284123420715 - f1-score (micro avg) 0.925
|
228 |
+
2024-03-26 10:19:30,192 saving best model
|
229 |
+
2024-03-26 10:19:30,613 ----------------------------------------------------------------------------------------------------
|
230 |
+
2024-03-26 10:19:32,484 epoch 10 - iter 4/48 - loss 0.06632142 - time (sec): 1.87 - samples/sec: 1382.85 - lr: 0.000003 - momentum: 0.000000
|
231 |
+
2024-03-26 10:19:35,257 epoch 10 - iter 8/48 - loss 0.04726173 - time (sec): 4.64 - samples/sec: 1246.33 - lr: 0.000003 - momentum: 0.000000
|
232 |
+
2024-03-26 10:19:37,284 epoch 10 - iter 12/48 - loss 0.05495615 - time (sec): 6.67 - samples/sec: 1306.57 - lr: 0.000003 - momentum: 0.000000
|
233 |
+
2024-03-26 10:19:39,304 epoch 10 - iter 16/48 - loss 0.05438606 - time (sec): 8.69 - samples/sec: 1400.10 - lr: 0.000002 - momentum: 0.000000
|
234 |
+
2024-03-26 10:19:40,170 epoch 10 - iter 20/48 - loss 0.05397075 - time (sec): 9.56 - samples/sec: 1477.42 - lr: 0.000002 - momentum: 0.000000
|
235 |
+
2024-03-26 10:19:41,853 epoch 10 - iter 24/48 - loss 0.05286287 - time (sec): 11.24 - samples/sec: 1505.12 - lr: 0.000002 - momentum: 0.000000
|
236 |
+
2024-03-26 10:19:42,787 epoch 10 - iter 28/48 - loss 0.05312673 - time (sec): 12.17 - samples/sec: 1569.84 - lr: 0.000002 - momentum: 0.000000
|
237 |
+
2024-03-26 10:19:45,100 epoch 10 - iter 32/48 - loss 0.05163266 - time (sec): 14.48 - samples/sec: 1535.96 - lr: 0.000001 - momentum: 0.000000
|
238 |
+
2024-03-26 10:19:47,587 epoch 10 - iter 36/48 - loss 0.05428024 - time (sec): 16.97 - samples/sec: 1502.19 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 10:19:49,469 epoch 10 - iter 40/48 - loss 0.05721031 - time (sec): 18.85 - samples/sec: 1496.49 - lr: 0.000001 - momentum: 0.000000
|
240 |
+
2024-03-26 10:19:52,039 epoch 10 - iter 44/48 - loss 0.05600849 - time (sec): 21.42 - samples/sec: 1484.28 - lr: 0.000001 - momentum: 0.000000
|
241 |
+
2024-03-26 10:19:53,639 epoch 10 - iter 48/48 - loss 0.05587015 - time (sec): 23.02 - samples/sec: 1497.23 - lr: 0.000000 - momentum: 0.000000
|
242 |
+
2024-03-26 10:19:53,639 ----------------------------------------------------------------------------------------------------
|
243 |
+
2024-03-26 10:19:53,639 EPOCH 10 done: loss 0.0559 - lr: 0.000000
|
244 |
+
2024-03-26 10:19:54,542 DEV : loss 0.15424026548862457 - f1-score (micro avg) 0.9273
|
245 |
+
2024-03-26 10:19:54,543 saving best model
|
246 |
+
2024-03-26 10:19:55,253 ----------------------------------------------------------------------------------------------------
|
247 |
+
2024-03-26 10:19:55,253 Loading model from best epoch ...
|
248 |
+
2024-03-26 10:19:56,194 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
249 |
+
2024-03-26 10:19:56,949
|
250 |
+
Results:
|
251 |
+
- F-score (micro) 0.9048
|
252 |
+
- F-score (macro) 0.6876
|
253 |
+
- Accuracy 0.8284
|
254 |
+
|
255 |
+
By class:
|
256 |
+
precision recall f1-score support
|
257 |
+
|
258 |
+
Unternehmen 0.9102 0.8759 0.8927 266
|
259 |
+
Auslagerung 0.8682 0.8996 0.8836 249
|
260 |
+
Ort 0.9635 0.9851 0.9742 134
|
261 |
+
Software 0.0000 0.0000 0.0000 0
|
262 |
+
|
263 |
+
micro avg 0.9020 0.9076 0.9048 649
|
264 |
+
macro avg 0.6855 0.6902 0.6876 649
|
265 |
+
weighted avg 0.9051 0.9076 0.9060 649
|
266 |
+
|
267 |
+
2024-03-26 10:19:56,949 ----------------------------------------------------------------------------------------------------
|