File size: 23,814 Bytes
db5ada2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Train: 758 sentences
2024-03-26 10:24:52,166 (train_with_dev=False, train_with_test=False)
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Training Params:
2024-03-26 10:24:52,166 - learning_rate: "3e-05"
2024-03-26 10:24:52,166 - mini_batch_size: "8"
2024-03-26 10:24:52,166 - max_epochs: "10"
2024-03-26 10:24:52,166 - shuffle: "True"
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Plugins:
2024-03-26 10:24:52,166 - TensorboardLogger
2024-03-26 10:24:52,166 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,166 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:24:52,166 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:24:52,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,167 Computation:
2024-03-26 10:24:52,167 - compute on device: cuda:0
2024-03-26 10:24:52,167 - embedding storage: none
2024-03-26 10:24:52,167 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,167 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr3e-05-4"
2024-03-26 10:24:52,167 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,167 ----------------------------------------------------------------------------------------------------
2024-03-26 10:24:52,167 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:24:53,520 epoch 1 - iter 9/95 - loss 3.31156291 - time (sec): 1.35 - samples/sec: 2144.74 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:24:54,905 epoch 1 - iter 18/95 - loss 3.18392069 - time (sec): 2.74 - samples/sec: 2014.03 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:24:56,522 epoch 1 - iter 27/95 - loss 2.95366883 - time (sec): 4.36 - samples/sec: 1969.00 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:24:58,491 epoch 1 - iter 36/95 - loss 2.72938282 - time (sec): 6.32 - samples/sec: 1887.79 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:25:00,336 epoch 1 - iter 45/95 - loss 2.51840902 - time (sec): 8.17 - samples/sec: 1908.99 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:25:02,554 epoch 1 - iter 54/95 - loss 2.37628283 - time (sec): 10.39 - samples/sec: 1843.30 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:25:04,557 epoch 1 - iter 63/95 - loss 2.24029015 - time (sec): 12.39 - samples/sec: 1824.17 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:25:05,526 epoch 1 - iter 72/95 - loss 2.15411890 - time (sec): 13.36 - samples/sec: 1869.87 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:25:07,799 epoch 1 - iter 81/95 - loss 2.02104777 - time (sec): 15.63 - samples/sec: 1817.14 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:25:09,119 epoch 1 - iter 90/95 - loss 1.88999619 - time (sec): 16.95 - samples/sec: 1885.32 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:25:10,378 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:10,379 EPOCH 1 done: loss 1.8224 - lr: 0.000028
2024-03-26 10:25:11,332 DEV : loss 0.5509695410728455 - f1-score (micro avg) 0.6394
2024-03-26 10:25:11,333 saving best model
2024-03-26 10:25:11,615 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:13,192 epoch 2 - iter 9/95 - loss 0.74076124 - time (sec): 1.58 - samples/sec: 1827.24 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:25:14,827 epoch 2 - iter 18/95 - loss 0.64312417 - time (sec): 3.21 - samples/sec: 1924.49 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:25:16,603 epoch 2 - iter 27/95 - loss 0.59053178 - time (sec): 4.99 - samples/sec: 1895.84 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:25:18,977 epoch 2 - iter 36/95 - loss 0.52064870 - time (sec): 7.36 - samples/sec: 1772.23 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:25:20,940 epoch 2 - iter 45/95 - loss 0.49481256 - time (sec): 9.32 - samples/sec: 1769.45 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:25:22,693 epoch 2 - iter 54/95 - loss 0.49494445 - time (sec): 11.08 - samples/sec: 1790.39 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:25:25,097 epoch 2 - iter 63/95 - loss 0.46932616 - time (sec): 13.48 - samples/sec: 1773.50 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:25:26,915 epoch 2 - iter 72/95 - loss 0.46316340 - time (sec): 15.30 - samples/sec: 1767.50 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:25:29,086 epoch 2 - iter 81/95 - loss 0.45228059 - time (sec): 17.47 - samples/sec: 1751.09 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:25:30,368 epoch 2 - iter 90/95 - loss 0.44481235 - time (sec): 18.75 - samples/sec: 1776.61 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:25:30,810 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:30,810 EPOCH 2 done: loss 0.4387 - lr: 0.000027
2024-03-26 10:25:31,701 DEV : loss 0.27566346526145935 - f1-score (micro avg) 0.8453
2024-03-26 10:25:31,704 saving best model
2024-03-26 10:25:32,186 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:33,679 epoch 3 - iter 9/95 - loss 0.28125940 - time (sec): 1.49 - samples/sec: 1776.87 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:25:35,396 epoch 3 - iter 18/95 - loss 0.24015894 - time (sec): 3.21 - samples/sec: 1742.05 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:25:37,224 epoch 3 - iter 27/95 - loss 0.23445075 - time (sec): 5.04 - samples/sec: 1768.16 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:25:38,998 epoch 3 - iter 36/95 - loss 0.23589931 - time (sec): 6.81 - samples/sec: 1772.37 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:25:40,991 epoch 3 - iter 45/95 - loss 0.23131598 - time (sec): 8.80 - samples/sec: 1793.43 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:25:43,209 epoch 3 - iter 54/95 - loss 0.22372789 - time (sec): 11.02 - samples/sec: 1757.31 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:25:44,900 epoch 3 - iter 63/95 - loss 0.21970639 - time (sec): 12.71 - samples/sec: 1759.73 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:25:46,852 epoch 3 - iter 72/95 - loss 0.21660214 - time (sec): 14.66 - samples/sec: 1765.29 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:25:48,807 epoch 3 - iter 81/95 - loss 0.22201067 - time (sec): 16.62 - samples/sec: 1782.08 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:25:51,025 epoch 3 - iter 90/95 - loss 0.21545506 - time (sec): 18.84 - samples/sec: 1760.47 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:25:51,637 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:51,638 EPOCH 3 done: loss 0.2183 - lr: 0.000024
2024-03-26 10:25:52,544 DEV : loss 0.20986029505729675 - f1-score (micro avg) 0.8793
2024-03-26 10:25:52,546 saving best model
2024-03-26 10:25:52,986 ----------------------------------------------------------------------------------------------------
2024-03-26 10:25:55,360 epoch 4 - iter 9/95 - loss 0.10059051 - time (sec): 2.37 - samples/sec: 1667.65 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:25:56,506 epoch 4 - iter 18/95 - loss 0.12160418 - time (sec): 3.52 - samples/sec: 1819.41 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:25:58,610 epoch 4 - iter 27/95 - loss 0.13599375 - time (sec): 5.62 - samples/sec: 1849.65 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:26:00,074 epoch 4 - iter 36/95 - loss 0.13862392 - time (sec): 7.09 - samples/sec: 1882.76 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:26:01,369 epoch 4 - iter 45/95 - loss 0.13926567 - time (sec): 8.38 - samples/sec: 1914.79 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:26:03,402 epoch 4 - iter 54/95 - loss 0.13469600 - time (sec): 10.41 - samples/sec: 1858.54 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:26:05,642 epoch 4 - iter 63/95 - loss 0.14272038 - time (sec): 12.65 - samples/sec: 1829.66 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:26:07,074 epoch 4 - iter 72/95 - loss 0.14102890 - time (sec): 14.09 - samples/sec: 1865.50 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:26:08,646 epoch 4 - iter 81/95 - loss 0.13827607 - time (sec): 15.66 - samples/sec: 1896.84 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:26:10,235 epoch 4 - iter 90/95 - loss 0.13680899 - time (sec): 17.25 - samples/sec: 1925.34 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:26:10,854 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:10,854 EPOCH 4 done: loss 0.1367 - lr: 0.000020
2024-03-26 10:26:11,748 DEV : loss 0.20099645853042603 - f1-score (micro avg) 0.8814
2024-03-26 10:26:11,749 saving best model
2024-03-26 10:26:12,202 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:13,391 epoch 5 - iter 9/95 - loss 0.14854127 - time (sec): 1.19 - samples/sec: 2490.69 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:26:14,805 epoch 5 - iter 18/95 - loss 0.13874171 - time (sec): 2.60 - samples/sec: 2240.53 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:26:16,759 epoch 5 - iter 27/95 - loss 0.12505013 - time (sec): 4.56 - samples/sec: 2018.87 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:26:19,148 epoch 5 - iter 36/95 - loss 0.11891017 - time (sec): 6.94 - samples/sec: 1828.85 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:26:20,348 epoch 5 - iter 45/95 - loss 0.12166274 - time (sec): 8.14 - samples/sec: 1875.26 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:26:22,184 epoch 5 - iter 54/95 - loss 0.11393605 - time (sec): 9.98 - samples/sec: 1917.94 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:26:24,209 epoch 5 - iter 63/95 - loss 0.10482095 - time (sec): 12.01 - samples/sec: 1903.57 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:26:25,458 epoch 5 - iter 72/95 - loss 0.10370554 - time (sec): 13.25 - samples/sec: 1931.40 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:26:27,975 epoch 5 - iter 81/95 - loss 0.09741425 - time (sec): 15.77 - samples/sec: 1862.26 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:26:29,980 epoch 5 - iter 90/95 - loss 0.09710361 - time (sec): 17.78 - samples/sec: 1841.82 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:26:30,838 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:30,838 EPOCH 5 done: loss 0.0989 - lr: 0.000017
2024-03-26 10:26:31,822 DEV : loss 0.1644967943429947 - f1-score (micro avg) 0.9117
2024-03-26 10:26:31,823 saving best model
2024-03-26 10:26:32,270 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:33,920 epoch 6 - iter 9/95 - loss 0.10413120 - time (sec): 1.65 - samples/sec: 2011.85 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:26:35,965 epoch 6 - iter 18/95 - loss 0.08089059 - time (sec): 3.69 - samples/sec: 1835.17 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:26:37,392 epoch 6 - iter 27/95 - loss 0.08805997 - time (sec): 5.12 - samples/sec: 1866.44 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:26:39,706 epoch 6 - iter 36/95 - loss 0.07261456 - time (sec): 7.43 - samples/sec: 1727.43 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:26:41,473 epoch 6 - iter 45/95 - loss 0.06884988 - time (sec): 9.20 - samples/sec: 1748.39 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:26:43,942 epoch 6 - iter 54/95 - loss 0.07558854 - time (sec): 11.67 - samples/sec: 1725.16 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:26:45,446 epoch 6 - iter 63/95 - loss 0.07659241 - time (sec): 13.17 - samples/sec: 1742.49 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:26:46,973 epoch 6 - iter 72/95 - loss 0.07788665 - time (sec): 14.70 - samples/sec: 1764.59 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:26:49,046 epoch 6 - iter 81/95 - loss 0.07804266 - time (sec): 16.77 - samples/sec: 1757.52 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:26:50,216 epoch 6 - iter 90/95 - loss 0.08145631 - time (sec): 17.94 - samples/sec: 1802.53 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:26:51,543 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:51,543 EPOCH 6 done: loss 0.0800 - lr: 0.000014
2024-03-26 10:26:52,437 DEV : loss 0.16239121556282043 - f1-score (micro avg) 0.9151
2024-03-26 10:26:52,438 saving best model
2024-03-26 10:26:52,911 ----------------------------------------------------------------------------------------------------
2024-03-26 10:26:54,266 epoch 7 - iter 9/95 - loss 0.05622469 - time (sec): 1.35 - samples/sec: 2343.97 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:26:56,378 epoch 7 - iter 18/95 - loss 0.05406749 - time (sec): 3.47 - samples/sec: 1945.67 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:26:58,265 epoch 7 - iter 27/95 - loss 0.06078903 - time (sec): 5.35 - samples/sec: 1826.18 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:26:59,548 epoch 7 - iter 36/95 - loss 0.05888607 - time (sec): 6.64 - samples/sec: 1885.06 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:27:01,230 epoch 7 - iter 45/95 - loss 0.05971791 - time (sec): 8.32 - samples/sec: 1891.63 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:27:03,423 epoch 7 - iter 54/95 - loss 0.05716422 - time (sec): 10.51 - samples/sec: 1864.14 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:27:05,458 epoch 7 - iter 63/95 - loss 0.05760654 - time (sec): 12.55 - samples/sec: 1814.82 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:27:07,579 epoch 7 - iter 72/95 - loss 0.05620365 - time (sec): 14.67 - samples/sec: 1789.21 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:27:09,084 epoch 7 - iter 81/95 - loss 0.06064974 - time (sec): 16.17 - samples/sec: 1795.78 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:27:10,952 epoch 7 - iter 90/95 - loss 0.06445434 - time (sec): 18.04 - samples/sec: 1823.26 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:27:11,633 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:11,633 EPOCH 7 done: loss 0.0640 - lr: 0.000010
2024-03-26 10:27:12,537 DEV : loss 0.15409202873706818 - f1-score (micro avg) 0.9208
2024-03-26 10:27:12,538 saving best model
2024-03-26 10:27:12,998 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:14,640 epoch 8 - iter 9/95 - loss 0.02608247 - time (sec): 1.64 - samples/sec: 1793.80 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:27:16,763 epoch 8 - iter 18/95 - loss 0.03144674 - time (sec): 3.76 - samples/sec: 1761.66 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:27:18,610 epoch 8 - iter 27/95 - loss 0.04433786 - time (sec): 5.61 - samples/sec: 1729.74 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:27:20,578 epoch 8 - iter 36/95 - loss 0.04263690 - time (sec): 7.58 - samples/sec: 1738.07 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:27:21,601 epoch 8 - iter 45/95 - loss 0.04899586 - time (sec): 8.60 - samples/sec: 1823.91 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:27:23,528 epoch 8 - iter 54/95 - loss 0.04889158 - time (sec): 10.53 - samples/sec: 1814.37 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:27:25,748 epoch 8 - iter 63/95 - loss 0.05325093 - time (sec): 12.75 - samples/sec: 1797.74 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:27:27,949 epoch 8 - iter 72/95 - loss 0.05321026 - time (sec): 14.95 - samples/sec: 1788.16 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:27:29,646 epoch 8 - iter 81/95 - loss 0.05236218 - time (sec): 16.65 - samples/sec: 1792.92 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:27:31,568 epoch 8 - iter 90/95 - loss 0.04940129 - time (sec): 18.57 - samples/sec: 1788.03 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:27:32,166 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:32,166 EPOCH 8 done: loss 0.0496 - lr: 0.000007
2024-03-26 10:27:33,063 DEV : loss 0.16207414865493774 - f1-score (micro avg) 0.9223
2024-03-26 10:27:33,064 saving best model
2024-03-26 10:27:33,538 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:35,061 epoch 9 - iter 9/95 - loss 0.04824836 - time (sec): 1.52 - samples/sec: 2091.15 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:27:37,352 epoch 9 - iter 18/95 - loss 0.04164786 - time (sec): 3.81 - samples/sec: 1786.39 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:27:38,944 epoch 9 - iter 27/95 - loss 0.03450957 - time (sec): 5.40 - samples/sec: 1803.48 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:27:41,246 epoch 9 - iter 36/95 - loss 0.03847090 - time (sec): 7.71 - samples/sec: 1760.67 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:27:43,135 epoch 9 - iter 45/95 - loss 0.03682640 - time (sec): 9.59 - samples/sec: 1734.04 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:27:44,497 epoch 9 - iter 54/95 - loss 0.04046342 - time (sec): 10.96 - samples/sec: 1780.92 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:27:46,572 epoch 9 - iter 63/95 - loss 0.03871736 - time (sec): 13.03 - samples/sec: 1759.33 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:27:47,792 epoch 9 - iter 72/95 - loss 0.04374224 - time (sec): 14.25 - samples/sec: 1793.60 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:27:50,554 epoch 9 - iter 81/95 - loss 0.04236482 - time (sec): 17.01 - samples/sec: 1745.39 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:27:52,199 epoch 9 - iter 90/95 - loss 0.04069339 - time (sec): 18.66 - samples/sec: 1765.59 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:27:52,862 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:52,862 EPOCH 9 done: loss 0.0423 - lr: 0.000004
2024-03-26 10:27:53,757 DEV : loss 0.1653764247894287 - f1-score (micro avg) 0.9211
2024-03-26 10:27:53,759 ----------------------------------------------------------------------------------------------------
2024-03-26 10:27:55,594 epoch 10 - iter 9/95 - loss 0.04135826 - time (sec): 1.84 - samples/sec: 1689.72 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:27:57,850 epoch 10 - iter 18/95 - loss 0.04412331 - time (sec): 4.09 - samples/sec: 1629.02 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:27:59,259 epoch 10 - iter 27/95 - loss 0.03803873 - time (sec): 5.50 - samples/sec: 1783.48 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:28:00,977 epoch 10 - iter 36/95 - loss 0.03579299 - time (sec): 7.22 - samples/sec: 1828.24 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:28:02,390 epoch 10 - iter 45/95 - loss 0.03456453 - time (sec): 8.63 - samples/sec: 1860.61 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:28:03,413 epoch 10 - iter 54/95 - loss 0.03349836 - time (sec): 9.65 - samples/sec: 1932.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:28:05,218 epoch 10 - iter 63/95 - loss 0.03079665 - time (sec): 11.46 - samples/sec: 1907.53 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:28:07,472 epoch 10 - iter 72/95 - loss 0.03522809 - time (sec): 13.71 - samples/sec: 1859.15 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:28:09,104 epoch 10 - iter 81/95 - loss 0.03835410 - time (sec): 15.35 - samples/sec: 1851.59 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:28:11,405 epoch 10 - iter 90/95 - loss 0.03677696 - time (sec): 17.65 - samples/sec: 1841.74 - lr: 0.000000 - momentum: 0.000000
2024-03-26 10:28:12,644 ----------------------------------------------------------------------------------------------------
2024-03-26 10:28:12,644 EPOCH 10 done: loss 0.0370 - lr: 0.000000
2024-03-26 10:28:13,542 DEV : loss 0.16609874367713928 - f1-score (micro avg) 0.9295
2024-03-26 10:28:13,543 saving best model
2024-03-26 10:28:14,275 ----------------------------------------------------------------------------------------------------
2024-03-26 10:28:14,275 Loading model from best epoch ...
2024-03-26 10:28:15,185 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:28:15,938
Results:
- F-score (micro) 0.9085
- F-score (macro) 0.6896
- Accuracy 0.8371
By class:
precision recall f1-score support
Unternehmen 0.9360 0.8797 0.9070 266
Auslagerung 0.8561 0.9076 0.8811 249
Ort 0.9632 0.9776 0.9704 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9064 0.9106 0.9085 649
macro avg 0.6888 0.6912 0.6896 649
weighted avg 0.9110 0.9106 0.9101 649
2024-03-26 10:28:15,938 ----------------------------------------------------------------------------------------------------
|