Upload ./training.log with huggingface_hub
Browse files- training.log +264 -0
training.log
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 11:12:07,458 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 11:12:07,459 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(30001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 11:12:07,459 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 11:12:07,459 Train: 758 sentences
|
54 |
+
2024-03-26 11:12:07,459 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 11:12:07,459 Training Params:
|
57 |
+
2024-03-26 11:12:07,459 - learning_rate: "3e-05"
|
58 |
+
2024-03-26 11:12:07,459 - mini_batch_size: "16"
|
59 |
+
2024-03-26 11:12:07,459 - max_epochs: "10"
|
60 |
+
2024-03-26 11:12:07,459 - shuffle: "True"
|
61 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 11:12:07,459 Plugins:
|
63 |
+
2024-03-26 11:12:07,459 - TensorboardLogger
|
64 |
+
2024-03-26 11:12:07,459 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 11:12:07,459 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 11:12:07,459 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 11:12:07,459 Computation:
|
70 |
+
2024-03-26 11:12:07,459 - compute on device: cuda:0
|
71 |
+
2024-03-26 11:12:07,459 - embedding storage: none
|
72 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 11:12:07,459 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-2"
|
74 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 11:12:07,459 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 11:12:07,459 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 11:12:09,254 epoch 1 - iter 4/48 - loss 3.16306784 - time (sec): 1.79 - samples/sec: 1683.21 - lr: 0.000002 - momentum: 0.000000
|
78 |
+
2024-03-26 11:12:11,484 epoch 1 - iter 8/48 - loss 3.08728552 - time (sec): 4.02 - samples/sec: 1542.55 - lr: 0.000004 - momentum: 0.000000
|
79 |
+
2024-03-26 11:12:13,424 epoch 1 - iter 12/48 - loss 3.02503918 - time (sec): 5.96 - samples/sec: 1494.59 - lr: 0.000007 - momentum: 0.000000
|
80 |
+
2024-03-26 11:12:15,448 epoch 1 - iter 16/48 - loss 2.90887267 - time (sec): 7.99 - samples/sec: 1518.99 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2024-03-26 11:12:17,757 epoch 1 - iter 20/48 - loss 2.78404911 - time (sec): 10.30 - samples/sec: 1483.97 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2024-03-26 11:12:20,883 epoch 1 - iter 24/48 - loss 2.66287611 - time (sec): 13.42 - samples/sec: 1354.23 - lr: 0.000014 - momentum: 0.000000
|
83 |
+
2024-03-26 11:12:23,406 epoch 1 - iter 28/48 - loss 2.53932089 - time (sec): 15.95 - samples/sec: 1336.49 - lr: 0.000017 - momentum: 0.000000
|
84 |
+
2024-03-26 11:12:24,241 epoch 1 - iter 32/48 - loss 2.45998768 - time (sec): 16.78 - samples/sec: 1391.37 - lr: 0.000019 - momentum: 0.000000
|
85 |
+
2024-03-26 11:12:25,574 epoch 1 - iter 36/48 - loss 2.36289832 - time (sec): 18.11 - samples/sec: 1443.65 - lr: 0.000022 - momentum: 0.000000
|
86 |
+
2024-03-26 11:12:27,525 epoch 1 - iter 40/48 - loss 2.28678685 - time (sec): 20.07 - samples/sec: 1449.80 - lr: 0.000024 - momentum: 0.000000
|
87 |
+
2024-03-26 11:12:29,505 epoch 1 - iter 44/48 - loss 2.18927422 - time (sec): 22.05 - samples/sec: 1449.30 - lr: 0.000027 - momentum: 0.000000
|
88 |
+
2024-03-26 11:12:30,921 epoch 1 - iter 48/48 - loss 2.11069614 - time (sec): 23.46 - samples/sec: 1469.26 - lr: 0.000029 - momentum: 0.000000
|
89 |
+
2024-03-26 11:12:30,922 ----------------------------------------------------------------------------------------------------
|
90 |
+
2024-03-26 11:12:30,922 EPOCH 1 done: loss 2.1107 - lr: 0.000029
|
91 |
+
2024-03-26 11:12:31,865 DEV : loss 0.7406538128852844 - f1-score (micro avg) 0.4904
|
92 |
+
2024-03-26 11:12:31,866 saving best model
|
93 |
+
2024-03-26 11:12:32,158 ----------------------------------------------------------------------------------------------------
|
94 |
+
2024-03-26 11:12:33,483 epoch 2 - iter 4/48 - loss 1.05138817 - time (sec): 1.32 - samples/sec: 2191.17 - lr: 0.000030 - momentum: 0.000000
|
95 |
+
2024-03-26 11:12:35,353 epoch 2 - iter 8/48 - loss 0.87906687 - time (sec): 3.19 - samples/sec: 1909.15 - lr: 0.000030 - momentum: 0.000000
|
96 |
+
2024-03-26 11:12:38,859 epoch 2 - iter 12/48 - loss 0.75980156 - time (sec): 6.70 - samples/sec: 1519.05 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2024-03-26 11:12:41,406 epoch 2 - iter 16/48 - loss 0.70656249 - time (sec): 9.25 - samples/sec: 1440.33 - lr: 0.000029 - momentum: 0.000000
|
98 |
+
2024-03-26 11:12:44,203 epoch 2 - iter 20/48 - loss 0.65983774 - time (sec): 12.04 - samples/sec: 1379.31 - lr: 0.000029 - momentum: 0.000000
|
99 |
+
2024-03-26 11:12:46,198 epoch 2 - iter 24/48 - loss 0.62246019 - time (sec): 14.04 - samples/sec: 1373.20 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2024-03-26 11:12:48,002 epoch 2 - iter 28/48 - loss 0.61743183 - time (sec): 15.84 - samples/sec: 1384.37 - lr: 0.000028 - momentum: 0.000000
|
101 |
+
2024-03-26 11:12:49,808 epoch 2 - iter 32/48 - loss 0.60027304 - time (sec): 17.65 - samples/sec: 1394.07 - lr: 0.000028 - momentum: 0.000000
|
102 |
+
2024-03-26 11:12:51,737 epoch 2 - iter 36/48 - loss 0.58144132 - time (sec): 19.58 - samples/sec: 1401.19 - lr: 0.000028 - momentum: 0.000000
|
103 |
+
2024-03-26 11:12:52,763 epoch 2 - iter 40/48 - loss 0.56884272 - time (sec): 20.60 - samples/sec: 1448.84 - lr: 0.000027 - momentum: 0.000000
|
104 |
+
2024-03-26 11:12:54,236 epoch 2 - iter 44/48 - loss 0.56205915 - time (sec): 22.08 - samples/sec: 1468.31 - lr: 0.000027 - momentum: 0.000000
|
105 |
+
2024-03-26 11:12:55,816 epoch 2 - iter 48/48 - loss 0.54402847 - time (sec): 23.66 - samples/sec: 1457.17 - lr: 0.000027 - momentum: 0.000000
|
106 |
+
2024-03-26 11:12:55,816 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 11:12:55,816 EPOCH 2 done: loss 0.5440 - lr: 0.000027
|
108 |
+
2024-03-26 11:12:56,749 DEV : loss 0.3272944986820221 - f1-score (micro avg) 0.7565
|
109 |
+
2024-03-26 11:12:56,750 saving best model
|
110 |
+
2024-03-26 11:12:57,213 ----------------------------------------------------------------------------------------------------
|
111 |
+
2024-03-26 11:12:59,771 epoch 3 - iter 4/48 - loss 0.30544675 - time (sec): 2.56 - samples/sec: 1176.92 - lr: 0.000026 - momentum: 0.000000
|
112 |
+
2024-03-26 11:13:01,960 epoch 3 - iter 8/48 - loss 0.30379025 - time (sec): 4.75 - samples/sec: 1338.00 - lr: 0.000026 - momentum: 0.000000
|
113 |
+
2024-03-26 11:13:03,549 epoch 3 - iter 12/48 - loss 0.31891615 - time (sec): 6.33 - samples/sec: 1400.54 - lr: 0.000026 - momentum: 0.000000
|
114 |
+
2024-03-26 11:13:05,320 epoch 3 - iter 16/48 - loss 0.29901581 - time (sec): 8.11 - samples/sec: 1402.16 - lr: 0.000026 - momentum: 0.000000
|
115 |
+
2024-03-26 11:13:06,511 epoch 3 - iter 20/48 - loss 0.30884041 - time (sec): 9.30 - samples/sec: 1471.74 - lr: 0.000025 - momentum: 0.000000
|
116 |
+
2024-03-26 11:13:08,379 epoch 3 - iter 24/48 - loss 0.31810372 - time (sec): 11.16 - samples/sec: 1473.90 - lr: 0.000025 - momentum: 0.000000
|
117 |
+
2024-03-26 11:13:10,884 epoch 3 - iter 28/48 - loss 0.31428333 - time (sec): 13.67 - samples/sec: 1415.34 - lr: 0.000025 - momentum: 0.000000
|
118 |
+
2024-03-26 11:13:12,794 epoch 3 - iter 32/48 - loss 0.31267095 - time (sec): 15.58 - samples/sec: 1420.98 - lr: 0.000025 - momentum: 0.000000
|
119 |
+
2024-03-26 11:13:14,278 epoch 3 - iter 36/48 - loss 0.30305540 - time (sec): 17.06 - samples/sec: 1452.18 - lr: 0.000024 - momentum: 0.000000
|
120 |
+
2024-03-26 11:13:16,599 epoch 3 - iter 40/48 - loss 0.29326992 - time (sec): 19.38 - samples/sec: 1424.28 - lr: 0.000024 - momentum: 0.000000
|
121 |
+
2024-03-26 11:13:19,982 epoch 3 - iter 44/48 - loss 0.27254472 - time (sec): 22.77 - samples/sec: 1415.27 - lr: 0.000024 - momentum: 0.000000
|
122 |
+
2024-03-26 11:13:21,332 epoch 3 - iter 48/48 - loss 0.26917818 - time (sec): 24.12 - samples/sec: 1429.30 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2024-03-26 11:13:21,333 ----------------------------------------------------------------------------------------------------
|
124 |
+
2024-03-26 11:13:21,333 EPOCH 3 done: loss 0.2692 - lr: 0.000023
|
125 |
+
2024-03-26 11:13:22,276 DEV : loss 0.2584502100944519 - f1-score (micro avg) 0.8292
|
126 |
+
2024-03-26 11:13:22,279 saving best model
|
127 |
+
2024-03-26 11:13:22,739 ----------------------------------------------------------------------------------------------------
|
128 |
+
2024-03-26 11:13:24,351 epoch 4 - iter 4/48 - loss 0.29781570 - time (sec): 1.61 - samples/sec: 1582.51 - lr: 0.000023 - momentum: 0.000000
|
129 |
+
2024-03-26 11:13:26,710 epoch 4 - iter 8/48 - loss 0.22897059 - time (sec): 3.97 - samples/sec: 1509.70 - lr: 0.000023 - momentum: 0.000000
|
130 |
+
2024-03-26 11:13:27,969 epoch 4 - iter 12/48 - loss 0.21408042 - time (sec): 5.23 - samples/sec: 1598.39 - lr: 0.000023 - momentum: 0.000000
|
131 |
+
2024-03-26 11:13:30,257 epoch 4 - iter 16/48 - loss 0.20453825 - time (sec): 7.52 - samples/sec: 1499.82 - lr: 0.000022 - momentum: 0.000000
|
132 |
+
2024-03-26 11:13:32,884 epoch 4 - iter 20/48 - loss 0.19298299 - time (sec): 10.14 - samples/sec: 1378.36 - lr: 0.000022 - momentum: 0.000000
|
133 |
+
2024-03-26 11:13:35,007 epoch 4 - iter 24/48 - loss 0.20089208 - time (sec): 12.27 - samples/sec: 1372.28 - lr: 0.000022 - momentum: 0.000000
|
134 |
+
2024-03-26 11:13:37,157 epoch 4 - iter 28/48 - loss 0.19731722 - time (sec): 14.42 - samples/sec: 1379.88 - lr: 0.000022 - momentum: 0.000000
|
135 |
+
2024-03-26 11:13:39,826 epoch 4 - iter 32/48 - loss 0.19273634 - time (sec): 17.09 - samples/sec: 1349.67 - lr: 0.000021 - momentum: 0.000000
|
136 |
+
2024-03-26 11:13:42,677 epoch 4 - iter 36/48 - loss 0.18444787 - time (sec): 19.94 - samples/sec: 1341.70 - lr: 0.000021 - momentum: 0.000000
|
137 |
+
2024-03-26 11:13:44,459 epoch 4 - iter 40/48 - loss 0.17908396 - time (sec): 21.72 - samples/sec: 1339.53 - lr: 0.000021 - momentum: 0.000000
|
138 |
+
2024-03-26 11:13:46,546 epoch 4 - iter 44/48 - loss 0.17774704 - time (sec): 23.81 - samples/sec: 1340.95 - lr: 0.000020 - momentum: 0.000000
|
139 |
+
2024-03-26 11:13:48,279 epoch 4 - iter 48/48 - loss 0.17546508 - time (sec): 25.54 - samples/sec: 1349.77 - lr: 0.000020 - momentum: 0.000000
|
140 |
+
2024-03-26 11:13:48,279 ----------------------------------------------------------------------------------------------------
|
141 |
+
2024-03-26 11:13:48,279 EPOCH 4 done: loss 0.1755 - lr: 0.000020
|
142 |
+
2024-03-26 11:13:49,244 DEV : loss 0.2244909107685089 - f1-score (micro avg) 0.8723
|
143 |
+
2024-03-26 11:13:49,246 saving best model
|
144 |
+
2024-03-26 11:13:49,699 ----------------------------------------------------------------------------------------------------
|
145 |
+
2024-03-26 11:13:50,536 epoch 5 - iter 4/48 - loss 0.09331887 - time (sec): 0.84 - samples/sec: 2191.66 - lr: 0.000020 - momentum: 0.000000
|
146 |
+
2024-03-26 11:13:51,957 epoch 5 - iter 8/48 - loss 0.11095802 - time (sec): 2.26 - samples/sec: 1970.19 - lr: 0.000020 - momentum: 0.000000
|
147 |
+
2024-03-26 11:13:54,821 epoch 5 - iter 12/48 - loss 0.10642550 - time (sec): 5.12 - samples/sec: 1558.10 - lr: 0.000019 - momentum: 0.000000
|
148 |
+
2024-03-26 11:13:57,934 epoch 5 - iter 16/48 - loss 0.10476513 - time (sec): 8.23 - samples/sec: 1370.39 - lr: 0.000019 - momentum: 0.000000
|
149 |
+
2024-03-26 11:13:59,365 epoch 5 - iter 20/48 - loss 0.11438732 - time (sec): 9.67 - samples/sec: 1420.32 - lr: 0.000019 - momentum: 0.000000
|
150 |
+
2024-03-26 11:14:02,022 epoch 5 - iter 24/48 - loss 0.11257857 - time (sec): 12.32 - samples/sec: 1359.65 - lr: 0.000018 - momentum: 0.000000
|
151 |
+
2024-03-26 11:14:04,162 epoch 5 - iter 28/48 - loss 0.11104460 - time (sec): 14.46 - samples/sec: 1351.01 - lr: 0.000018 - momentum: 0.000000
|
152 |
+
2024-03-26 11:14:06,530 epoch 5 - iter 32/48 - loss 0.11618625 - time (sec): 16.83 - samples/sec: 1376.21 - lr: 0.000018 - momentum: 0.000000
|
153 |
+
2024-03-26 11:14:08,037 epoch 5 - iter 36/48 - loss 0.12098463 - time (sec): 18.34 - samples/sec: 1400.80 - lr: 0.000018 - momentum: 0.000000
|
154 |
+
2024-03-26 11:14:10,603 epoch 5 - iter 40/48 - loss 0.11599874 - time (sec): 20.90 - samples/sec: 1359.09 - lr: 0.000017 - momentum: 0.000000
|
155 |
+
2024-03-26 11:14:12,737 epoch 5 - iter 44/48 - loss 0.11697148 - time (sec): 23.04 - samples/sec: 1373.23 - lr: 0.000017 - momentum: 0.000000
|
156 |
+
2024-03-26 11:14:14,708 epoch 5 - iter 48/48 - loss 0.11878602 - time (sec): 25.01 - samples/sec: 1378.39 - lr: 0.000017 - momentum: 0.000000
|
157 |
+
2024-03-26 11:14:14,708 ----------------------------------------------------------------------------------------------------
|
158 |
+
2024-03-26 11:14:14,709 EPOCH 5 done: loss 0.1188 - lr: 0.000017
|
159 |
+
2024-03-26 11:14:15,653 DEV : loss 0.20735225081443787 - f1-score (micro avg) 0.8886
|
160 |
+
2024-03-26 11:14:15,654 saving best model
|
161 |
+
2024-03-26 11:14:16,137 ----------------------------------------------------------------------------------------------------
|
162 |
+
2024-03-26 11:14:17,840 epoch 6 - iter 4/48 - loss 0.11428082 - time (sec): 1.70 - samples/sec: 1463.60 - lr: 0.000017 - momentum: 0.000000
|
163 |
+
2024-03-26 11:14:20,285 epoch 6 - iter 8/48 - loss 0.10615835 - time (sec): 4.15 - samples/sec: 1543.50 - lr: 0.000016 - momentum: 0.000000
|
164 |
+
2024-03-26 11:14:22,266 epoch 6 - iter 12/48 - loss 0.09809695 - time (sec): 6.13 - samples/sec: 1478.37 - lr: 0.000016 - momentum: 0.000000
|
165 |
+
2024-03-26 11:14:24,383 epoch 6 - iter 16/48 - loss 0.09716603 - time (sec): 8.24 - samples/sec: 1470.82 - lr: 0.000016 - momentum: 0.000000
|
166 |
+
2024-03-26 11:14:27,150 epoch 6 - iter 20/48 - loss 0.09527628 - time (sec): 11.01 - samples/sec: 1450.83 - lr: 0.000015 - momentum: 0.000000
|
167 |
+
2024-03-26 11:14:28,723 epoch 6 - iter 24/48 - loss 0.10550915 - time (sec): 12.58 - samples/sec: 1470.85 - lr: 0.000015 - momentum: 0.000000
|
168 |
+
2024-03-26 11:14:30,147 epoch 6 - iter 28/48 - loss 0.10560312 - time (sec): 14.01 - samples/sec: 1475.45 - lr: 0.000015 - momentum: 0.000000
|
169 |
+
2024-03-26 11:14:31,356 epoch 6 - iter 32/48 - loss 0.10260877 - time (sec): 15.22 - samples/sec: 1495.04 - lr: 0.000015 - momentum: 0.000000
|
170 |
+
2024-03-26 11:14:32,882 epoch 6 - iter 36/48 - loss 0.09749042 - time (sec): 16.74 - samples/sec: 1524.96 - lr: 0.000014 - momentum: 0.000000
|
171 |
+
2024-03-26 11:14:34,858 epoch 6 - iter 40/48 - loss 0.09905047 - time (sec): 18.72 - samples/sec: 1513.84 - lr: 0.000014 - momentum: 0.000000
|
172 |
+
2024-03-26 11:14:37,140 epoch 6 - iter 44/48 - loss 0.09659837 - time (sec): 21.00 - samples/sec: 1531.03 - lr: 0.000014 - momentum: 0.000000
|
173 |
+
2024-03-26 11:14:38,883 epoch 6 - iter 48/48 - loss 0.09620050 - time (sec): 22.74 - samples/sec: 1515.63 - lr: 0.000014 - momentum: 0.000000
|
174 |
+
2024-03-26 11:14:38,883 ----------------------------------------------------------------------------------------------------
|
175 |
+
2024-03-26 11:14:38,883 EPOCH 6 done: loss 0.0962 - lr: 0.000014
|
176 |
+
2024-03-26 11:14:39,836 DEV : loss 0.18259809911251068 - f1-score (micro avg) 0.9103
|
177 |
+
2024-03-26 11:14:39,837 saving best model
|
178 |
+
2024-03-26 11:14:40,303 ----------------------------------------------------------------------------------------------------
|
179 |
+
2024-03-26 11:14:41,940 epoch 7 - iter 4/48 - loss 0.06204275 - time (sec): 1.64 - samples/sec: 1488.75 - lr: 0.000013 - momentum: 0.000000
|
180 |
+
2024-03-26 11:14:43,601 epoch 7 - iter 8/48 - loss 0.08162162 - time (sec): 3.30 - samples/sec: 1502.42 - lr: 0.000013 - momentum: 0.000000
|
181 |
+
2024-03-26 11:14:45,773 epoch 7 - iter 12/48 - loss 0.07584555 - time (sec): 5.47 - samples/sec: 1439.06 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2024-03-26 11:14:47,847 epoch 7 - iter 16/48 - loss 0.07316749 - time (sec): 7.54 - samples/sec: 1477.06 - lr: 0.000012 - momentum: 0.000000
|
183 |
+
2024-03-26 11:14:48,507 epoch 7 - iter 20/48 - loss 0.06894237 - time (sec): 8.20 - samples/sec: 1579.88 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2024-03-26 11:14:50,098 epoch 7 - iter 24/48 - loss 0.06789884 - time (sec): 9.79 - samples/sec: 1564.39 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2024-03-26 11:14:53,003 epoch 7 - iter 28/48 - loss 0.06686264 - time (sec): 12.70 - samples/sec: 1466.57 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2024-03-26 11:14:55,810 epoch 7 - iter 32/48 - loss 0.06577245 - time (sec): 15.51 - samples/sec: 1397.17 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2024-03-26 11:14:58,649 epoch 7 - iter 36/48 - loss 0.07040216 - time (sec): 18.34 - samples/sec: 1405.31 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2024-03-26 11:15:00,626 epoch 7 - iter 40/48 - loss 0.07466776 - time (sec): 20.32 - samples/sec: 1414.61 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2024-03-26 11:15:03,204 epoch 7 - iter 44/48 - loss 0.07480391 - time (sec): 22.90 - samples/sec: 1390.99 - lr: 0.000010 - momentum: 0.000000
|
190 |
+
2024-03-26 11:15:05,048 epoch 7 - iter 48/48 - loss 0.07371206 - time (sec): 24.74 - samples/sec: 1393.15 - lr: 0.000010 - momentum: 0.000000
|
191 |
+
2024-03-26 11:15:05,048 ----------------------------------------------------------------------------------------------------
|
192 |
+
2024-03-26 11:15:05,048 EPOCH 7 done: loss 0.0737 - lr: 0.000010
|
193 |
+
2024-03-26 11:15:06,019 DEV : loss 0.1877364218235016 - f1-score (micro avg) 0.9073
|
194 |
+
2024-03-26 11:15:06,020 ----------------------------------------------------------------------------------------------------
|
195 |
+
2024-03-26 11:15:08,718 epoch 8 - iter 4/48 - loss 0.07579462 - time (sec): 2.70 - samples/sec: 1224.41 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2024-03-26 11:15:10,839 epoch 8 - iter 8/48 - loss 0.05991518 - time (sec): 4.82 - samples/sec: 1217.82 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2024-03-26 11:15:14,025 epoch 8 - iter 12/48 - loss 0.05723449 - time (sec): 8.00 - samples/sec: 1210.78 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2024-03-26 11:15:16,001 epoch 8 - iter 16/48 - loss 0.06624845 - time (sec): 9.98 - samples/sec: 1236.69 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2024-03-26 11:15:17,487 epoch 8 - iter 20/48 - loss 0.06264195 - time (sec): 11.47 - samples/sec: 1280.67 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2024-03-26 11:15:20,048 epoch 8 - iter 24/48 - loss 0.06002540 - time (sec): 14.03 - samples/sec: 1272.13 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2024-03-26 11:15:21,828 epoch 8 - iter 28/48 - loss 0.06409926 - time (sec): 15.81 - samples/sec: 1308.14 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2024-03-26 11:15:23,457 epoch 8 - iter 32/48 - loss 0.06212462 - time (sec): 17.44 - samples/sec: 1334.23 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2024-03-26 11:15:24,748 epoch 8 - iter 36/48 - loss 0.06077673 - time (sec): 18.73 - samples/sec: 1366.08 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2024-03-26 11:15:27,154 epoch 8 - iter 40/48 - loss 0.06101414 - time (sec): 21.13 - samples/sec: 1371.91 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2024-03-26 11:15:30,041 epoch 8 - iter 44/48 - loss 0.05819661 - time (sec): 24.02 - samples/sec: 1341.24 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2024-03-26 11:15:32,117 epoch 8 - iter 48/48 - loss 0.05850858 - time (sec): 26.10 - samples/sec: 1320.96 - lr: 0.000007 - momentum: 0.000000
|
207 |
+
2024-03-26 11:15:32,117 ----------------------------------------------------------------------------------------------------
|
208 |
+
2024-03-26 11:15:32,117 EPOCH 8 done: loss 0.0585 - lr: 0.000007
|
209 |
+
2024-03-26 11:15:33,074 DEV : loss 0.18553169071674347 - f1-score (micro avg) 0.9269
|
210 |
+
2024-03-26 11:15:33,075 saving best model
|
211 |
+
2024-03-26 11:15:33,555 ----------------------------------------------------------------------------------------------------
|
212 |
+
2024-03-26 11:15:35,421 epoch 9 - iter 4/48 - loss 0.05732311 - time (sec): 1.86 - samples/sec: 1525.50 - lr: 0.000007 - momentum: 0.000000
|
213 |
+
2024-03-26 11:15:37,946 epoch 9 - iter 8/48 - loss 0.04919745 - time (sec): 4.39 - samples/sec: 1397.05 - lr: 0.000006 - momentum: 0.000000
|
214 |
+
2024-03-26 11:15:40,357 epoch 9 - iter 12/48 - loss 0.06047389 - time (sec): 6.80 - samples/sec: 1357.42 - lr: 0.000006 - momentum: 0.000000
|
215 |
+
2024-03-26 11:15:42,457 epoch 9 - iter 16/48 - loss 0.06071694 - time (sec): 8.90 - samples/sec: 1358.99 - lr: 0.000006 - momentum: 0.000000
|
216 |
+
2024-03-26 11:15:43,964 epoch 9 - iter 20/48 - loss 0.05316476 - time (sec): 10.41 - samples/sec: 1416.10 - lr: 0.000006 - momentum: 0.000000
|
217 |
+
2024-03-26 11:15:45,205 epoch 9 - iter 24/48 - loss 0.05009929 - time (sec): 11.65 - samples/sec: 1462.49 - lr: 0.000005 - momentum: 0.000000
|
218 |
+
2024-03-26 11:15:46,906 epoch 9 - iter 28/48 - loss 0.04927559 - time (sec): 13.35 - samples/sec: 1481.52 - lr: 0.000005 - momentum: 0.000000
|
219 |
+
2024-03-26 11:15:49,258 epoch 9 - iter 32/48 - loss 0.05509981 - time (sec): 15.70 - samples/sec: 1464.55 - lr: 0.000005 - momentum: 0.000000
|
220 |
+
2024-03-26 11:15:51,996 epoch 9 - iter 36/48 - loss 0.05508145 - time (sec): 18.44 - samples/sec: 1416.65 - lr: 0.000004 - momentum: 0.000000
|
221 |
+
2024-03-26 11:15:54,978 epoch 9 - iter 40/48 - loss 0.05449908 - time (sec): 21.42 - samples/sec: 1375.91 - lr: 0.000004 - momentum: 0.000000
|
222 |
+
2024-03-26 11:15:56,846 epoch 9 - iter 44/48 - loss 0.05400296 - time (sec): 23.29 - samples/sec: 1390.32 - lr: 0.000004 - momentum: 0.000000
|
223 |
+
2024-03-26 11:15:57,905 epoch 9 - iter 48/48 - loss 0.05389343 - time (sec): 24.35 - samples/sec: 1415.78 - lr: 0.000004 - momentum: 0.000000
|
224 |
+
2024-03-26 11:15:57,905 ----------------------------------------------------------------------------------------------------
|
225 |
+
2024-03-26 11:15:57,905 EPOCH 9 done: loss 0.0539 - lr: 0.000004
|
226 |
+
2024-03-26 11:15:58,855 DEV : loss 0.1756318360567093 - f1-score (micro avg) 0.9235
|
227 |
+
2024-03-26 11:15:58,857 ----------------------------------------------------------------------------------------------------
|
228 |
+
2024-03-26 11:16:01,220 epoch 10 - iter 4/48 - loss 0.02756730 - time (sec): 2.36 - samples/sec: 1397.98 - lr: 0.000003 - momentum: 0.000000
|
229 |
+
2024-03-26 11:16:03,396 epoch 10 - iter 8/48 - loss 0.03411980 - time (sec): 4.54 - samples/sec: 1361.41 - lr: 0.000003 - momentum: 0.000000
|
230 |
+
2024-03-26 11:16:05,325 epoch 10 - iter 12/48 - loss 0.03366891 - time (sec): 6.47 - samples/sec: 1364.60 - lr: 0.000003 - momentum: 0.000000
|
231 |
+
2024-03-26 11:16:06,556 epoch 10 - iter 16/48 - loss 0.03593148 - time (sec): 7.70 - samples/sec: 1431.57 - lr: 0.000002 - momentum: 0.000000
|
232 |
+
2024-03-26 11:16:08,558 epoch 10 - iter 20/48 - loss 0.04270731 - time (sec): 9.70 - samples/sec: 1413.16 - lr: 0.000002 - momentum: 0.000000
|
233 |
+
2024-03-26 11:16:10,903 epoch 10 - iter 24/48 - loss 0.05028433 - time (sec): 12.04 - samples/sec: 1378.76 - lr: 0.000002 - momentum: 0.000000
|
234 |
+
2024-03-26 11:16:11,805 epoch 10 - iter 28/48 - loss 0.05128601 - time (sec): 12.95 - samples/sec: 1451.20 - lr: 0.000002 - momentum: 0.000000
|
235 |
+
2024-03-26 11:16:13,125 epoch 10 - iter 32/48 - loss 0.04953866 - time (sec): 14.27 - samples/sec: 1488.71 - lr: 0.000001 - momentum: 0.000000
|
236 |
+
2024-03-26 11:16:15,943 epoch 10 - iter 36/48 - loss 0.04689467 - time (sec): 17.08 - samples/sec: 1445.36 - lr: 0.000001 - momentum: 0.000000
|
237 |
+
2024-03-26 11:16:18,324 epoch 10 - iter 40/48 - loss 0.04744759 - time (sec): 19.47 - samples/sec: 1477.13 - lr: 0.000001 - momentum: 0.000000
|
238 |
+
2024-03-26 11:16:20,948 epoch 10 - iter 44/48 - loss 0.04670001 - time (sec): 22.09 - samples/sec: 1451.98 - lr: 0.000001 - momentum: 0.000000
|
239 |
+
2024-03-26 11:16:22,941 epoch 10 - iter 48/48 - loss 0.04566351 - time (sec): 24.08 - samples/sec: 1431.38 - lr: 0.000000 - momentum: 0.000000
|
240 |
+
2024-03-26 11:16:22,942 ----------------------------------------------------------------------------------------------------
|
241 |
+
2024-03-26 11:16:22,942 EPOCH 10 done: loss 0.0457 - lr: 0.000000
|
242 |
+
2024-03-26 11:16:23,896 DEV : loss 0.18053248524665833 - f1-score (micro avg) 0.9227
|
243 |
+
2024-03-26 11:16:24,184 ----------------------------------------------------------------------------------------------------
|
244 |
+
2024-03-26 11:16:24,185 Loading model from best epoch ...
|
245 |
+
2024-03-26 11:16:25,052 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
246 |
+
2024-03-26 11:16:25,801
|
247 |
+
Results:
|
248 |
+
- F-score (micro) 0.8963
|
249 |
+
- F-score (macro) 0.6819
|
250 |
+
- Accuracy 0.8144
|
251 |
+
|
252 |
+
By class:
|
253 |
+
precision recall f1-score support
|
254 |
+
|
255 |
+
Unternehmen 0.8859 0.8759 0.8809 266
|
256 |
+
Auslagerung 0.8577 0.8956 0.8762 249
|
257 |
+
Ort 0.9565 0.9851 0.9706 134
|
258 |
+
Software 0.0000 0.0000 0.0000 0
|
259 |
+
|
260 |
+
micro avg 0.8869 0.9060 0.8963 649
|
261 |
+
macro avg 0.6750 0.6891 0.6819 649
|
262 |
+
weighted avg 0.8897 0.9060 0.8976 649
|
263 |
+
|
264 |
+
2024-03-26 11:16:25,801 ----------------------------------------------------------------------------------------------------
|