File size: 23,699 Bytes
0440ad7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
2024-03-26 15:27:27,825 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,825 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Train: 758 sentences
2024-03-26 15:27:27,826 (train_with_dev=False, train_with_test=False)
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Training Params:
2024-03-26 15:27:27,826 - learning_rate: "5e-05"
2024-03-26 15:27:27,826 - mini_batch_size: "8"
2024-03-26 15:27:27,826 - max_epochs: "10"
2024-03-26 15:27:27,826 - shuffle: "True"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Plugins:
2024-03-26 15:27:27,826 - TensorboardLogger
2024-03-26 15:27:27,826 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:27:27,826 - metric: "('micro avg', 'f1-score')"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Computation:
2024-03-26 15:27:27,826 - compute on device: cuda:0
2024-03-26 15:27:27,826 - embedding storage: none
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs8-e10-lr5e-05-1"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:27:29,419 epoch 1 - iter 9/95 - loss 3.13070860 - time (sec): 1.59 - samples/sec: 1932.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:27:30,954 epoch 1 - iter 18/95 - loss 2.95822820 - time (sec): 3.13 - samples/sec: 1998.62 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:27:33,348 epoch 1 - iter 27/95 - loss 2.68831949 - time (sec): 5.52 - samples/sec: 1854.35 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:27:35,580 epoch 1 - iter 36/95 - loss 2.46404671 - time (sec): 7.75 - samples/sec: 1803.09 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:27:37,482 epoch 1 - iter 45/95 - loss 2.27412112 - time (sec): 9.66 - samples/sec: 1808.63 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:27:38,713 epoch 1 - iter 54/95 - loss 2.12463673 - time (sec): 10.89 - samples/sec: 1849.95 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:27:40,436 epoch 1 - iter 63/95 - loss 1.97163936 - time (sec): 12.61 - samples/sec: 1844.97 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:27:41,737 epoch 1 - iter 72/95 - loss 1.85271444 - time (sec): 13.91 - samples/sec: 1872.62 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:27:43,740 epoch 1 - iter 81/95 - loss 1.71149458 - time (sec): 15.91 - samples/sec: 1861.16 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:27:45,067 epoch 1 - iter 90/95 - loss 1.61167649 - time (sec): 17.24 - samples/sec: 1881.62 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:27:46,289 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:46,289 EPOCH 1 done: loss 1.5372 - lr: 0.000047
2024-03-26 15:27:47,216 DEV : loss 0.4110299050807953 - f1-score (micro avg) 0.7131
2024-03-26 15:27:47,217 saving best model
2024-03-26 15:27:47,503 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:49,568 epoch 2 - iter 9/95 - loss 0.36243150 - time (sec): 2.06 - samples/sec: 1788.95 - lr: 0.000050 - momentum: 0.000000
2024-03-26 15:27:51,260 epoch 2 - iter 18/95 - loss 0.39160173 - time (sec): 3.76 - samples/sec: 1931.52 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:27:53,081 epoch 2 - iter 27/95 - loss 0.37985520 - time (sec): 5.58 - samples/sec: 1848.37 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:27:54,860 epoch 2 - iter 36/95 - loss 0.36638865 - time (sec): 7.36 - samples/sec: 1817.59 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:27:56,767 epoch 2 - iter 45/95 - loss 0.34692669 - time (sec): 9.26 - samples/sec: 1828.18 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:27:58,974 epoch 2 - iter 54/95 - loss 0.32389617 - time (sec): 11.47 - samples/sec: 1800.04 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:28:00,320 epoch 2 - iter 63/95 - loss 0.32907154 - time (sec): 12.82 - samples/sec: 1838.02 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:28:01,653 epoch 2 - iter 72/95 - loss 0.32309260 - time (sec): 14.15 - samples/sec: 1869.63 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:28:03,468 epoch 2 - iter 81/95 - loss 0.31443661 - time (sec): 15.96 - samples/sec: 1854.18 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:28:05,122 epoch 2 - iter 90/95 - loss 0.30978395 - time (sec): 17.62 - samples/sec: 1852.35 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:28:06,072 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:06,072 EPOCH 2 done: loss 0.3041 - lr: 0.000045
2024-03-26 15:28:06,980 DEV : loss 0.2726188600063324 - f1-score (micro avg) 0.8589
2024-03-26 15:28:06,983 saving best model
2024-03-26 15:28:07,435 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:09,388 epoch 3 - iter 9/95 - loss 0.27963646 - time (sec): 1.95 - samples/sec: 1719.52 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:28:11,340 epoch 3 - iter 18/95 - loss 0.23117903 - time (sec): 3.90 - samples/sec: 1723.69 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:28:12,698 epoch 3 - iter 27/95 - loss 0.21432801 - time (sec): 5.26 - samples/sec: 1817.80 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:28:15,180 epoch 3 - iter 36/95 - loss 0.20348653 - time (sec): 7.74 - samples/sec: 1745.83 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:28:17,410 epoch 3 - iter 45/95 - loss 0.19347259 - time (sec): 9.97 - samples/sec: 1779.90 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:28:18,594 epoch 3 - iter 54/95 - loss 0.19292353 - time (sec): 11.16 - samples/sec: 1836.39 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:28:20,520 epoch 3 - iter 63/95 - loss 0.18736924 - time (sec): 13.08 - samples/sec: 1820.60 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:28:22,146 epoch 3 - iter 72/95 - loss 0.17704759 - time (sec): 14.71 - samples/sec: 1825.80 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:28:23,897 epoch 3 - iter 81/95 - loss 0.18033371 - time (sec): 16.46 - samples/sec: 1817.25 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:28:26,084 epoch 3 - iter 90/95 - loss 0.17298046 - time (sec): 18.65 - samples/sec: 1786.35 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:28:26,562 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:26,562 EPOCH 3 done: loss 0.1725 - lr: 0.000039
2024-03-26 15:28:27,491 DEV : loss 0.22025352716445923 - f1-score (micro avg) 0.8935
2024-03-26 15:28:27,493 saving best model
2024-03-26 15:28:27,948 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:29,557 epoch 4 - iter 9/95 - loss 0.14092195 - time (sec): 1.61 - samples/sec: 2004.45 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:28:31,585 epoch 4 - iter 18/95 - loss 0.12653179 - time (sec): 3.63 - samples/sec: 1774.44 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:28:33,358 epoch 4 - iter 27/95 - loss 0.12699223 - time (sec): 5.41 - samples/sec: 1801.77 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:28:35,913 epoch 4 - iter 36/95 - loss 0.10548739 - time (sec): 7.96 - samples/sec: 1730.39 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:28:37,595 epoch 4 - iter 45/95 - loss 0.11251881 - time (sec): 9.64 - samples/sec: 1750.56 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:28:39,146 epoch 4 - iter 54/95 - loss 0.11452554 - time (sec): 11.20 - samples/sec: 1801.59 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:28:41,003 epoch 4 - iter 63/95 - loss 0.11777649 - time (sec): 13.05 - samples/sec: 1823.81 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:28:42,290 epoch 4 - iter 72/95 - loss 0.11862434 - time (sec): 14.34 - samples/sec: 1852.95 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:28:44,007 epoch 4 - iter 81/95 - loss 0.11757033 - time (sec): 16.06 - samples/sec: 1843.02 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:28:45,515 epoch 4 - iter 90/95 - loss 0.11485727 - time (sec): 17.56 - samples/sec: 1862.55 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:28:46,418 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:46,418 EPOCH 4 done: loss 0.1144 - lr: 0.000034
2024-03-26 15:28:47,349 DEV : loss 0.2242664098739624 - f1-score (micro avg) 0.8907
2024-03-26 15:28:47,350 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:49,014 epoch 5 - iter 9/95 - loss 0.07661688 - time (sec): 1.66 - samples/sec: 1902.20 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:28:51,153 epoch 5 - iter 18/95 - loss 0.07915592 - time (sec): 3.80 - samples/sec: 1762.83 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:28:52,711 epoch 5 - iter 27/95 - loss 0.07883660 - time (sec): 5.36 - samples/sec: 1809.37 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:28:54,374 epoch 5 - iter 36/95 - loss 0.08005146 - time (sec): 7.02 - samples/sec: 1796.08 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:28:56,044 epoch 5 - iter 45/95 - loss 0.09108018 - time (sec): 8.69 - samples/sec: 1845.23 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:28:57,640 epoch 5 - iter 54/95 - loss 0.09556091 - time (sec): 10.29 - samples/sec: 1890.07 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:28:59,478 epoch 5 - iter 63/95 - loss 0.09055561 - time (sec): 12.13 - samples/sec: 1868.04 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:29:01,689 epoch 5 - iter 72/95 - loss 0.08392596 - time (sec): 14.34 - samples/sec: 1892.53 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:29:02,930 epoch 5 - iter 81/95 - loss 0.08323894 - time (sec): 15.58 - samples/sec: 1911.38 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:29:05,058 epoch 5 - iter 90/95 - loss 0.07969065 - time (sec): 17.71 - samples/sec: 1870.08 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:29:05,679 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:05,679 EPOCH 5 done: loss 0.0803 - lr: 0.000028
2024-03-26 15:29:06,577 DEV : loss 0.21445128321647644 - f1-score (micro avg) 0.9126
2024-03-26 15:29:06,578 saving best model
2024-03-26 15:29:07,116 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:08,678 epoch 6 - iter 9/95 - loss 0.03632379 - time (sec): 1.56 - samples/sec: 1852.05 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:29:10,675 epoch 6 - iter 18/95 - loss 0.05141724 - time (sec): 3.56 - samples/sec: 1843.60 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:29:12,349 epoch 6 - iter 27/95 - loss 0.05798526 - time (sec): 5.23 - samples/sec: 1878.69 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:29:13,998 epoch 6 - iter 36/95 - loss 0.05669773 - time (sec): 6.88 - samples/sec: 1841.59 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:29:15,588 epoch 6 - iter 45/95 - loss 0.06106147 - time (sec): 8.47 - samples/sec: 1856.42 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:29:17,582 epoch 6 - iter 54/95 - loss 0.06318994 - time (sec): 10.46 - samples/sec: 1837.19 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:29:19,166 epoch 6 - iter 63/95 - loss 0.06556589 - time (sec): 12.05 - samples/sec: 1834.67 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:29:21,972 epoch 6 - iter 72/95 - loss 0.05957997 - time (sec): 14.85 - samples/sec: 1795.19 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:29:23,818 epoch 6 - iter 81/95 - loss 0.05895095 - time (sec): 16.70 - samples/sec: 1803.15 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:29:25,492 epoch 6 - iter 90/95 - loss 0.05937033 - time (sec): 18.38 - samples/sec: 1796.56 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:29:26,111 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:26,111 EPOCH 6 done: loss 0.0591 - lr: 0.000023
2024-03-26 15:29:27,033 DEV : loss 0.19351260364055634 - f1-score (micro avg) 0.9177
2024-03-26 15:29:27,036 saving best model
2024-03-26 15:29:27,497 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:28,830 epoch 7 - iter 9/95 - loss 0.06471264 - time (sec): 1.33 - samples/sec: 2218.53 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:29:30,458 epoch 7 - iter 18/95 - loss 0.05493774 - time (sec): 2.96 - samples/sec: 1983.66 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:29:32,243 epoch 7 - iter 27/95 - loss 0.05992386 - time (sec): 4.75 - samples/sec: 1926.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:29:34,101 epoch 7 - iter 36/95 - loss 0.05179589 - time (sec): 6.60 - samples/sec: 1894.42 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:29:36,393 epoch 7 - iter 45/95 - loss 0.04631679 - time (sec): 8.90 - samples/sec: 1842.34 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:29:37,374 epoch 7 - iter 54/95 - loss 0.04784598 - time (sec): 9.88 - samples/sec: 1918.22 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:29:39,224 epoch 7 - iter 63/95 - loss 0.04478083 - time (sec): 11.73 - samples/sec: 1918.30 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:29:41,135 epoch 7 - iter 72/95 - loss 0.04368843 - time (sec): 13.64 - samples/sec: 1878.20 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:29:43,059 epoch 7 - iter 81/95 - loss 0.04493601 - time (sec): 15.56 - samples/sec: 1876.21 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:29:44,991 epoch 7 - iter 90/95 - loss 0.04441015 - time (sec): 17.49 - samples/sec: 1879.45 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:29:45,824 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:45,824 EPOCH 7 done: loss 0.0443 - lr: 0.000017
2024-03-26 15:29:46,750 DEV : loss 0.22614780068397522 - f1-score (micro avg) 0.9114
2024-03-26 15:29:46,751 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:48,375 epoch 8 - iter 9/95 - loss 0.03781758 - time (sec): 1.62 - samples/sec: 1842.63 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:29:50,386 epoch 8 - iter 18/95 - loss 0.04003328 - time (sec): 3.63 - samples/sec: 1673.11 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:29:51,952 epoch 8 - iter 27/95 - loss 0.04016870 - time (sec): 5.20 - samples/sec: 1770.10 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:29:53,681 epoch 8 - iter 36/95 - loss 0.04087006 - time (sec): 6.93 - samples/sec: 1816.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:29:55,990 epoch 8 - iter 45/95 - loss 0.03527162 - time (sec): 9.24 - samples/sec: 1799.65 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:29:58,298 epoch 8 - iter 54/95 - loss 0.03591706 - time (sec): 11.55 - samples/sec: 1803.48 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:30:00,264 epoch 8 - iter 63/95 - loss 0.03768535 - time (sec): 13.51 - samples/sec: 1806.93 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:30:01,348 epoch 8 - iter 72/95 - loss 0.03700051 - time (sec): 14.60 - samples/sec: 1839.60 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:30:03,012 epoch 8 - iter 81/95 - loss 0.03620747 - time (sec): 16.26 - samples/sec: 1825.32 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:30:04,386 epoch 8 - iter 90/95 - loss 0.03547569 - time (sec): 17.63 - samples/sec: 1840.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:30:05,601 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:05,601 EPOCH 8 done: loss 0.0381 - lr: 0.000012
2024-03-26 15:30:06,534 DEV : loss 0.22081464529037476 - f1-score (micro avg) 0.9378
2024-03-26 15:30:06,537 saving best model
2024-03-26 15:30:06,991 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:08,755 epoch 9 - iter 9/95 - loss 0.01270656 - time (sec): 1.76 - samples/sec: 1969.81 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:30:10,678 epoch 9 - iter 18/95 - loss 0.01559003 - time (sec): 3.69 - samples/sec: 1832.92 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:30:12,513 epoch 9 - iter 27/95 - loss 0.01660339 - time (sec): 5.52 - samples/sec: 1779.55 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:30:14,390 epoch 9 - iter 36/95 - loss 0.02526995 - time (sec): 7.40 - samples/sec: 1819.75 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:30:16,281 epoch 9 - iter 45/95 - loss 0.02355525 - time (sec): 9.29 - samples/sec: 1795.02 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:30:18,139 epoch 9 - iter 54/95 - loss 0.02327141 - time (sec): 11.15 - samples/sec: 1824.84 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:30:20,018 epoch 9 - iter 63/95 - loss 0.02441589 - time (sec): 13.03 - samples/sec: 1823.01 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:30:21,603 epoch 9 - iter 72/95 - loss 0.02670088 - time (sec): 14.61 - samples/sec: 1832.26 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:30:23,305 epoch 9 - iter 81/95 - loss 0.02941488 - time (sec): 16.31 - samples/sec: 1822.84 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:30:25,059 epoch 9 - iter 90/95 - loss 0.02761290 - time (sec): 18.07 - samples/sec: 1839.87 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:30:25,559 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:25,559 EPOCH 9 done: loss 0.0284 - lr: 0.000006
2024-03-26 15:30:26,474 DEV : loss 0.22866545617580414 - f1-score (micro avg) 0.9306
2024-03-26 15:30:26,476 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:27,944 epoch 10 - iter 9/95 - loss 0.01343831 - time (sec): 1.47 - samples/sec: 1892.16 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:30:29,758 epoch 10 - iter 18/95 - loss 0.01508347 - time (sec): 3.28 - samples/sec: 1842.05 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:30:31,987 epoch 10 - iter 27/95 - loss 0.02303455 - time (sec): 5.51 - samples/sec: 1754.41 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:30:33,838 epoch 10 - iter 36/95 - loss 0.02337816 - time (sec): 7.36 - samples/sec: 1781.61 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:30:35,008 epoch 10 - iter 45/95 - loss 0.02283129 - time (sec): 8.53 - samples/sec: 1837.13 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:30:36,914 epoch 10 - iter 54/95 - loss 0.02373572 - time (sec): 10.44 - samples/sec: 1824.11 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:30:38,312 epoch 10 - iter 63/95 - loss 0.02527243 - time (sec): 11.84 - samples/sec: 1835.91 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:30:40,557 epoch 10 - iter 72/95 - loss 0.02191466 - time (sec): 14.08 - samples/sec: 1819.01 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:30:42,859 epoch 10 - iter 81/95 - loss 0.02551541 - time (sec): 16.38 - samples/sec: 1802.31 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:30:44,694 epoch 10 - iter 90/95 - loss 0.02328698 - time (sec): 18.22 - samples/sec: 1796.83 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:30:45,706 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:45,706 EPOCH 10 done: loss 0.0223 - lr: 0.000001
2024-03-26 15:30:46,628 DEV : loss 0.2289051115512848 - f1-score (micro avg) 0.9364
2024-03-26 15:30:46,938 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:46,939 Loading model from best epoch ...
2024-03-26 15:30:47,812 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:30:48,571
Results:
- F-score (micro) 0.9134
- F-score (macro) 0.6937
- Accuracy 0.843
By class:
precision recall f1-score support
Unternehmen 0.9004 0.8835 0.8918 266
Auslagerung 0.8911 0.9197 0.9051 249
Ort 0.9706 0.9851 0.9778 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9085 0.9183 0.9134 649
macro avg 0.6905 0.6971 0.6937 649
weighted avg 0.9113 0.9183 0.9147 649
2024-03-26 15:30:48,571 ----------------------------------------------------------------------------------------------------
|