File size: 23,699 Bytes
0440ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2024-03-26 15:27:27,825 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,825 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Train:  758 sentences
2024-03-26 15:27:27,826         (train_with_dev=False, train_with_test=False)
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Training Params:
2024-03-26 15:27:27,826  - learning_rate: "5e-05" 
2024-03-26 15:27:27,826  - mini_batch_size: "8"
2024-03-26 15:27:27,826  - max_epochs: "10"
2024-03-26 15:27:27,826  - shuffle: "True"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Plugins:
2024-03-26 15:27:27,826  - TensorboardLogger
2024-03-26 15:27:27,826  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 15:27:27,826  - metric: "('micro avg', 'f1-score')"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Computation:
2024-03-26 15:27:27,826  - compute on device: cuda:0
2024-03-26 15:27:27,826  - embedding storage: none
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Model training base path: "flair-co-funer-german_dbmdz_bert_base-bs8-e10-lr5e-05-1"
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:27,826 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 15:27:29,419 epoch 1 - iter 9/95 - loss 3.13070860 - time (sec): 1.59 - samples/sec: 1932.69 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:27:30,954 epoch 1 - iter 18/95 - loss 2.95822820 - time (sec): 3.13 - samples/sec: 1998.62 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:27:33,348 epoch 1 - iter 27/95 - loss 2.68831949 - time (sec): 5.52 - samples/sec: 1854.35 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:27:35,580 epoch 1 - iter 36/95 - loss 2.46404671 - time (sec): 7.75 - samples/sec: 1803.09 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:27:37,482 epoch 1 - iter 45/95 - loss 2.27412112 - time (sec): 9.66 - samples/sec: 1808.63 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:27:38,713 epoch 1 - iter 54/95 - loss 2.12463673 - time (sec): 10.89 - samples/sec: 1849.95 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:27:40,436 epoch 1 - iter 63/95 - loss 1.97163936 - time (sec): 12.61 - samples/sec: 1844.97 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:27:41,737 epoch 1 - iter 72/95 - loss 1.85271444 - time (sec): 13.91 - samples/sec: 1872.62 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:27:43,740 epoch 1 - iter 81/95 - loss 1.71149458 - time (sec): 15.91 - samples/sec: 1861.16 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:27:45,067 epoch 1 - iter 90/95 - loss 1.61167649 - time (sec): 17.24 - samples/sec: 1881.62 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:27:46,289 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:46,289 EPOCH 1 done: loss 1.5372 - lr: 0.000047
2024-03-26 15:27:47,216 DEV : loss 0.4110299050807953 - f1-score (micro avg)  0.7131
2024-03-26 15:27:47,217 saving best model
2024-03-26 15:27:47,503 ----------------------------------------------------------------------------------------------------
2024-03-26 15:27:49,568 epoch 2 - iter 9/95 - loss 0.36243150 - time (sec): 2.06 - samples/sec: 1788.95 - lr: 0.000050 - momentum: 0.000000
2024-03-26 15:27:51,260 epoch 2 - iter 18/95 - loss 0.39160173 - time (sec): 3.76 - samples/sec: 1931.52 - lr: 0.000049 - momentum: 0.000000
2024-03-26 15:27:53,081 epoch 2 - iter 27/95 - loss 0.37985520 - time (sec): 5.58 - samples/sec: 1848.37 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:27:54,860 epoch 2 - iter 36/95 - loss 0.36638865 - time (sec): 7.36 - samples/sec: 1817.59 - lr: 0.000048 - momentum: 0.000000
2024-03-26 15:27:56,767 epoch 2 - iter 45/95 - loss 0.34692669 - time (sec): 9.26 - samples/sec: 1828.18 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:27:58,974 epoch 2 - iter 54/95 - loss 0.32389617 - time (sec): 11.47 - samples/sec: 1800.04 - lr: 0.000047 - momentum: 0.000000
2024-03-26 15:28:00,320 epoch 2 - iter 63/95 - loss 0.32907154 - time (sec): 12.82 - samples/sec: 1838.02 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:28:01,653 epoch 2 - iter 72/95 - loss 0.32309260 - time (sec): 14.15 - samples/sec: 1869.63 - lr: 0.000046 - momentum: 0.000000
2024-03-26 15:28:03,468 epoch 2 - iter 81/95 - loss 0.31443661 - time (sec): 15.96 - samples/sec: 1854.18 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:28:05,122 epoch 2 - iter 90/95 - loss 0.30978395 - time (sec): 17.62 - samples/sec: 1852.35 - lr: 0.000045 - momentum: 0.000000
2024-03-26 15:28:06,072 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:06,072 EPOCH 2 done: loss 0.3041 - lr: 0.000045
2024-03-26 15:28:06,980 DEV : loss 0.2726188600063324 - f1-score (micro avg)  0.8589
2024-03-26 15:28:06,983 saving best model
2024-03-26 15:28:07,435 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:09,388 epoch 3 - iter 9/95 - loss 0.27963646 - time (sec): 1.95 - samples/sec: 1719.52 - lr: 0.000044 - momentum: 0.000000
2024-03-26 15:28:11,340 epoch 3 - iter 18/95 - loss 0.23117903 - time (sec): 3.90 - samples/sec: 1723.69 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:28:12,698 epoch 3 - iter 27/95 - loss 0.21432801 - time (sec): 5.26 - samples/sec: 1817.80 - lr: 0.000043 - momentum: 0.000000
2024-03-26 15:28:15,180 epoch 3 - iter 36/95 - loss 0.20348653 - time (sec): 7.74 - samples/sec: 1745.83 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:28:17,410 epoch 3 - iter 45/95 - loss 0.19347259 - time (sec): 9.97 - samples/sec: 1779.90 - lr: 0.000042 - momentum: 0.000000
2024-03-26 15:28:18,594 epoch 3 - iter 54/95 - loss 0.19292353 - time (sec): 11.16 - samples/sec: 1836.39 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:28:20,520 epoch 3 - iter 63/95 - loss 0.18736924 - time (sec): 13.08 - samples/sec: 1820.60 - lr: 0.000041 - momentum: 0.000000
2024-03-26 15:28:22,146 epoch 3 - iter 72/95 - loss 0.17704759 - time (sec): 14.71 - samples/sec: 1825.80 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:28:23,897 epoch 3 - iter 81/95 - loss 0.18033371 - time (sec): 16.46 - samples/sec: 1817.25 - lr: 0.000040 - momentum: 0.000000
2024-03-26 15:28:26,084 epoch 3 - iter 90/95 - loss 0.17298046 - time (sec): 18.65 - samples/sec: 1786.35 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:28:26,562 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:26,562 EPOCH 3 done: loss 0.1725 - lr: 0.000039
2024-03-26 15:28:27,491 DEV : loss 0.22025352716445923 - f1-score (micro avg)  0.8935
2024-03-26 15:28:27,493 saving best model
2024-03-26 15:28:27,948 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:29,557 epoch 4 - iter 9/95 - loss 0.14092195 - time (sec): 1.61 - samples/sec: 2004.45 - lr: 0.000039 - momentum: 0.000000
2024-03-26 15:28:31,585 epoch 4 - iter 18/95 - loss 0.12653179 - time (sec): 3.63 - samples/sec: 1774.44 - lr: 0.000038 - momentum: 0.000000
2024-03-26 15:28:33,358 epoch 4 - iter 27/95 - loss 0.12699223 - time (sec): 5.41 - samples/sec: 1801.77 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:28:35,913 epoch 4 - iter 36/95 - loss 0.10548739 - time (sec): 7.96 - samples/sec: 1730.39 - lr: 0.000037 - momentum: 0.000000
2024-03-26 15:28:37,595 epoch 4 - iter 45/95 - loss 0.11251881 - time (sec): 9.64 - samples/sec: 1750.56 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:28:39,146 epoch 4 - iter 54/95 - loss 0.11452554 - time (sec): 11.20 - samples/sec: 1801.59 - lr: 0.000036 - momentum: 0.000000
2024-03-26 15:28:41,003 epoch 4 - iter 63/95 - loss 0.11777649 - time (sec): 13.05 - samples/sec: 1823.81 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:28:42,290 epoch 4 - iter 72/95 - loss 0.11862434 - time (sec): 14.34 - samples/sec: 1852.95 - lr: 0.000035 - momentum: 0.000000
2024-03-26 15:28:44,007 epoch 4 - iter 81/95 - loss 0.11757033 - time (sec): 16.06 - samples/sec: 1843.02 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:28:45,515 epoch 4 - iter 90/95 - loss 0.11485727 - time (sec): 17.56 - samples/sec: 1862.55 - lr: 0.000034 - momentum: 0.000000
2024-03-26 15:28:46,418 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:46,418 EPOCH 4 done: loss 0.1144 - lr: 0.000034
2024-03-26 15:28:47,349 DEV : loss 0.2242664098739624 - f1-score (micro avg)  0.8907
2024-03-26 15:28:47,350 ----------------------------------------------------------------------------------------------------
2024-03-26 15:28:49,014 epoch 5 - iter 9/95 - loss 0.07661688 - time (sec): 1.66 - samples/sec: 1902.20 - lr: 0.000033 - momentum: 0.000000
2024-03-26 15:28:51,153 epoch 5 - iter 18/95 - loss 0.07915592 - time (sec): 3.80 - samples/sec: 1762.83 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:28:52,711 epoch 5 - iter 27/95 - loss 0.07883660 - time (sec): 5.36 - samples/sec: 1809.37 - lr: 0.000032 - momentum: 0.000000
2024-03-26 15:28:54,374 epoch 5 - iter 36/95 - loss 0.08005146 - time (sec): 7.02 - samples/sec: 1796.08 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:28:56,044 epoch 5 - iter 45/95 - loss 0.09108018 - time (sec): 8.69 - samples/sec: 1845.23 - lr: 0.000031 - momentum: 0.000000
2024-03-26 15:28:57,640 epoch 5 - iter 54/95 - loss 0.09556091 - time (sec): 10.29 - samples/sec: 1890.07 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:28:59,478 epoch 5 - iter 63/95 - loss 0.09055561 - time (sec): 12.13 - samples/sec: 1868.04 - lr: 0.000030 - momentum: 0.000000
2024-03-26 15:29:01,689 epoch 5 - iter 72/95 - loss 0.08392596 - time (sec): 14.34 - samples/sec: 1892.53 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:29:02,930 epoch 5 - iter 81/95 - loss 0.08323894 - time (sec): 15.58 - samples/sec: 1911.38 - lr: 0.000029 - momentum: 0.000000
2024-03-26 15:29:05,058 epoch 5 - iter 90/95 - loss 0.07969065 - time (sec): 17.71 - samples/sec: 1870.08 - lr: 0.000028 - momentum: 0.000000
2024-03-26 15:29:05,679 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:05,679 EPOCH 5 done: loss 0.0803 - lr: 0.000028
2024-03-26 15:29:06,577 DEV : loss 0.21445128321647644 - f1-score (micro avg)  0.9126
2024-03-26 15:29:06,578 saving best model
2024-03-26 15:29:07,116 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:08,678 epoch 6 - iter 9/95 - loss 0.03632379 - time (sec): 1.56 - samples/sec: 1852.05 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:29:10,675 epoch 6 - iter 18/95 - loss 0.05141724 - time (sec): 3.56 - samples/sec: 1843.60 - lr: 0.000027 - momentum: 0.000000
2024-03-26 15:29:12,349 epoch 6 - iter 27/95 - loss 0.05798526 - time (sec): 5.23 - samples/sec: 1878.69 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:29:13,998 epoch 6 - iter 36/95 - loss 0.05669773 - time (sec): 6.88 - samples/sec: 1841.59 - lr: 0.000026 - momentum: 0.000000
2024-03-26 15:29:15,588 epoch 6 - iter 45/95 - loss 0.06106147 - time (sec): 8.47 - samples/sec: 1856.42 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:29:17,582 epoch 6 - iter 54/95 - loss 0.06318994 - time (sec): 10.46 - samples/sec: 1837.19 - lr: 0.000025 - momentum: 0.000000
2024-03-26 15:29:19,166 epoch 6 - iter 63/95 - loss 0.06556589 - time (sec): 12.05 - samples/sec: 1834.67 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:29:21,972 epoch 6 - iter 72/95 - loss 0.05957997 - time (sec): 14.85 - samples/sec: 1795.19 - lr: 0.000024 - momentum: 0.000000
2024-03-26 15:29:23,818 epoch 6 - iter 81/95 - loss 0.05895095 - time (sec): 16.70 - samples/sec: 1803.15 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:29:25,492 epoch 6 - iter 90/95 - loss 0.05937033 - time (sec): 18.38 - samples/sec: 1796.56 - lr: 0.000023 - momentum: 0.000000
2024-03-26 15:29:26,111 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:26,111 EPOCH 6 done: loss 0.0591 - lr: 0.000023
2024-03-26 15:29:27,033 DEV : loss 0.19351260364055634 - f1-score (micro avg)  0.9177
2024-03-26 15:29:27,036 saving best model
2024-03-26 15:29:27,497 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:28,830 epoch 7 - iter 9/95 - loss 0.06471264 - time (sec): 1.33 - samples/sec: 2218.53 - lr: 0.000022 - momentum: 0.000000
2024-03-26 15:29:30,458 epoch 7 - iter 18/95 - loss 0.05493774 - time (sec): 2.96 - samples/sec: 1983.66 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:29:32,243 epoch 7 - iter 27/95 - loss 0.05992386 - time (sec): 4.75 - samples/sec: 1926.33 - lr: 0.000021 - momentum: 0.000000
2024-03-26 15:29:34,101 epoch 7 - iter 36/95 - loss 0.05179589 - time (sec): 6.60 - samples/sec: 1894.42 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:29:36,393 epoch 7 - iter 45/95 - loss 0.04631679 - time (sec): 8.90 - samples/sec: 1842.34 - lr: 0.000020 - momentum: 0.000000
2024-03-26 15:29:37,374 epoch 7 - iter 54/95 - loss 0.04784598 - time (sec): 9.88 - samples/sec: 1918.22 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:29:39,224 epoch 7 - iter 63/95 - loss 0.04478083 - time (sec): 11.73 - samples/sec: 1918.30 - lr: 0.000019 - momentum: 0.000000
2024-03-26 15:29:41,135 epoch 7 - iter 72/95 - loss 0.04368843 - time (sec): 13.64 - samples/sec: 1878.20 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:29:43,059 epoch 7 - iter 81/95 - loss 0.04493601 - time (sec): 15.56 - samples/sec: 1876.21 - lr: 0.000018 - momentum: 0.000000
2024-03-26 15:29:44,991 epoch 7 - iter 90/95 - loss 0.04441015 - time (sec): 17.49 - samples/sec: 1879.45 - lr: 0.000017 - momentum: 0.000000
2024-03-26 15:29:45,824 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:45,824 EPOCH 7 done: loss 0.0443 - lr: 0.000017
2024-03-26 15:29:46,750 DEV : loss 0.22614780068397522 - f1-score (micro avg)  0.9114
2024-03-26 15:29:46,751 ----------------------------------------------------------------------------------------------------
2024-03-26 15:29:48,375 epoch 8 - iter 9/95 - loss 0.03781758 - time (sec): 1.62 - samples/sec: 1842.63 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:29:50,386 epoch 8 - iter 18/95 - loss 0.04003328 - time (sec): 3.63 - samples/sec: 1673.11 - lr: 0.000016 - momentum: 0.000000
2024-03-26 15:29:51,952 epoch 8 - iter 27/95 - loss 0.04016870 - time (sec): 5.20 - samples/sec: 1770.10 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:29:53,681 epoch 8 - iter 36/95 - loss 0.04087006 - time (sec): 6.93 - samples/sec: 1816.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 15:29:55,990 epoch 8 - iter 45/95 - loss 0.03527162 - time (sec): 9.24 - samples/sec: 1799.65 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:29:58,298 epoch 8 - iter 54/95 - loss 0.03591706 - time (sec): 11.55 - samples/sec: 1803.48 - lr: 0.000014 - momentum: 0.000000
2024-03-26 15:30:00,264 epoch 8 - iter 63/95 - loss 0.03768535 - time (sec): 13.51 - samples/sec: 1806.93 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:30:01,348 epoch 8 - iter 72/95 - loss 0.03700051 - time (sec): 14.60 - samples/sec: 1839.60 - lr: 0.000013 - momentum: 0.000000
2024-03-26 15:30:03,012 epoch 8 - iter 81/95 - loss 0.03620747 - time (sec): 16.26 - samples/sec: 1825.32 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:30:04,386 epoch 8 - iter 90/95 - loss 0.03547569 - time (sec): 17.63 - samples/sec: 1840.72 - lr: 0.000012 - momentum: 0.000000
2024-03-26 15:30:05,601 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:05,601 EPOCH 8 done: loss 0.0381 - lr: 0.000012
2024-03-26 15:30:06,534 DEV : loss 0.22081464529037476 - f1-score (micro avg)  0.9378
2024-03-26 15:30:06,537 saving best model
2024-03-26 15:30:06,991 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:08,755 epoch 9 - iter 9/95 - loss 0.01270656 - time (sec): 1.76 - samples/sec: 1969.81 - lr: 0.000011 - momentum: 0.000000
2024-03-26 15:30:10,678 epoch 9 - iter 18/95 - loss 0.01559003 - time (sec): 3.69 - samples/sec: 1832.92 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:30:12,513 epoch 9 - iter 27/95 - loss 0.01660339 - time (sec): 5.52 - samples/sec: 1779.55 - lr: 0.000010 - momentum: 0.000000
2024-03-26 15:30:14,390 epoch 9 - iter 36/95 - loss 0.02526995 - time (sec): 7.40 - samples/sec: 1819.75 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:30:16,281 epoch 9 - iter 45/95 - loss 0.02355525 - time (sec): 9.29 - samples/sec: 1795.02 - lr: 0.000009 - momentum: 0.000000
2024-03-26 15:30:18,139 epoch 9 - iter 54/95 - loss 0.02327141 - time (sec): 11.15 - samples/sec: 1824.84 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:30:20,018 epoch 9 - iter 63/95 - loss 0.02441589 - time (sec): 13.03 - samples/sec: 1823.01 - lr: 0.000008 - momentum: 0.000000
2024-03-26 15:30:21,603 epoch 9 - iter 72/95 - loss 0.02670088 - time (sec): 14.61 - samples/sec: 1832.26 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:30:23,305 epoch 9 - iter 81/95 - loss 0.02941488 - time (sec): 16.31 - samples/sec: 1822.84 - lr: 0.000007 - momentum: 0.000000
2024-03-26 15:30:25,059 epoch 9 - iter 90/95 - loss 0.02761290 - time (sec): 18.07 - samples/sec: 1839.87 - lr: 0.000006 - momentum: 0.000000
2024-03-26 15:30:25,559 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:25,559 EPOCH 9 done: loss 0.0284 - lr: 0.000006
2024-03-26 15:30:26,474 DEV : loss 0.22866545617580414 - f1-score (micro avg)  0.9306
2024-03-26 15:30:26,476 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:27,944 epoch 10 - iter 9/95 - loss 0.01343831 - time (sec): 1.47 - samples/sec: 1892.16 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:30:29,758 epoch 10 - iter 18/95 - loss 0.01508347 - time (sec): 3.28 - samples/sec: 1842.05 - lr: 0.000005 - momentum: 0.000000
2024-03-26 15:30:31,987 epoch 10 - iter 27/95 - loss 0.02303455 - time (sec): 5.51 - samples/sec: 1754.41 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:30:33,838 epoch 10 - iter 36/95 - loss 0.02337816 - time (sec): 7.36 - samples/sec: 1781.61 - lr: 0.000004 - momentum: 0.000000
2024-03-26 15:30:35,008 epoch 10 - iter 45/95 - loss 0.02283129 - time (sec): 8.53 - samples/sec: 1837.13 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:30:36,914 epoch 10 - iter 54/95 - loss 0.02373572 - time (sec): 10.44 - samples/sec: 1824.11 - lr: 0.000003 - momentum: 0.000000
2024-03-26 15:30:38,312 epoch 10 - iter 63/95 - loss 0.02527243 - time (sec): 11.84 - samples/sec: 1835.91 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:30:40,557 epoch 10 - iter 72/95 - loss 0.02191466 - time (sec): 14.08 - samples/sec: 1819.01 - lr: 0.000002 - momentum: 0.000000
2024-03-26 15:30:42,859 epoch 10 - iter 81/95 - loss 0.02551541 - time (sec): 16.38 - samples/sec: 1802.31 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:30:44,694 epoch 10 - iter 90/95 - loss 0.02328698 - time (sec): 18.22 - samples/sec: 1796.83 - lr: 0.000001 - momentum: 0.000000
2024-03-26 15:30:45,706 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:45,706 EPOCH 10 done: loss 0.0223 - lr: 0.000001
2024-03-26 15:30:46,628 DEV : loss 0.2289051115512848 - f1-score (micro avg)  0.9364
2024-03-26 15:30:46,938 ----------------------------------------------------------------------------------------------------
2024-03-26 15:30:46,939 Loading model from best epoch ...
2024-03-26 15:30:47,812 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 15:30:48,571 
Results:
- F-score (micro) 0.9134
- F-score (macro) 0.6937
- Accuracy 0.843

By class:
              precision    recall  f1-score   support

 Unternehmen     0.9004    0.8835    0.8918       266
 Auslagerung     0.8911    0.9197    0.9051       249
         Ort     0.9706    0.9851    0.9778       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.9085    0.9183    0.9134       649
   macro avg     0.6905    0.6971    0.6937       649
weighted avg     0.9113    0.9183    0.9147       649

2024-03-26 15:30:48,571 ----------------------------------------------------------------------------------------------------