File size: 24,128 Bytes
b2ee0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Train:  1100 sentences
2023-10-18 14:38:57,878         (train_with_dev=False, train_with_test=False)
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Training Params:
2023-10-18 14:38:57,878  - learning_rate: "5e-05" 
2023-10-18 14:38:57,878  - mini_batch_size: "8"
2023-10-18 14:38:57,878  - max_epochs: "10"
2023-10-18 14:38:57,878  - shuffle: "True"
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Plugins:
2023-10-18 14:38:57,878  - TensorboardLogger
2023-10-18 14:38:57,879  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 14:38:57,879  - metric: "('micro avg', 'f1-score')"
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Computation:
2023-10-18 14:38:57,879  - compute on device: cuda:0
2023-10-18 14:38:57,879  - embedding storage: none
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Model training base path: "hmbench-ajmc/de-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 14:38:58,190 epoch 1 - iter 13/138 - loss 3.42245675 - time (sec): 0.31 - samples/sec: 6894.88 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:38:58,497 epoch 1 - iter 26/138 - loss 3.45651479 - time (sec): 0.62 - samples/sec: 7001.30 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:38:58,820 epoch 1 - iter 39/138 - loss 3.39669444 - time (sec): 0.94 - samples/sec: 7122.95 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:38:59,109 epoch 1 - iter 52/138 - loss 3.29406571 - time (sec): 1.23 - samples/sec: 7213.47 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:38:59,383 epoch 1 - iter 65/138 - loss 3.17358152 - time (sec): 1.50 - samples/sec: 7188.29 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:38:59,685 epoch 1 - iter 78/138 - loss 3.01361420 - time (sec): 1.81 - samples/sec: 7262.93 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:38:59,983 epoch 1 - iter 91/138 - loss 2.85709471 - time (sec): 2.10 - samples/sec: 7281.39 - lr: 0.000033 - momentum: 0.000000
2023-10-18 14:39:00,279 epoch 1 - iter 104/138 - loss 2.68024097 - time (sec): 2.40 - samples/sec: 7265.33 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:00,581 epoch 1 - iter 117/138 - loss 2.50700588 - time (sec): 2.70 - samples/sec: 7245.48 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:00,875 epoch 1 - iter 130/138 - loss 2.38275601 - time (sec): 3.00 - samples/sec: 7216.10 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:01,049 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:01,050 EPOCH 1 done: loss 2.3098 - lr: 0.000047
2023-10-18 14:39:01,297 DEV : loss 0.9283897876739502 - f1-score (micro avg)  0.0
2023-10-18 14:39:01,304 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:01,607 epoch 2 - iter 13/138 - loss 1.09385578 - time (sec): 0.30 - samples/sec: 7627.74 - lr: 0.000050 - momentum: 0.000000
2023-10-18 14:39:01,903 epoch 2 - iter 26/138 - loss 1.05428928 - time (sec): 0.60 - samples/sec: 7716.24 - lr: 0.000049 - momentum: 0.000000
2023-10-18 14:39:02,195 epoch 2 - iter 39/138 - loss 1.01869524 - time (sec): 0.89 - samples/sec: 7577.86 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:39:02,501 epoch 2 - iter 52/138 - loss 1.03347462 - time (sec): 1.20 - samples/sec: 7495.98 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:39:02,807 epoch 2 - iter 65/138 - loss 0.99740698 - time (sec): 1.50 - samples/sec: 7430.15 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:03,085 epoch 2 - iter 78/138 - loss 0.94137628 - time (sec): 1.78 - samples/sec: 7409.33 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:03,377 epoch 2 - iter 91/138 - loss 0.91957672 - time (sec): 2.07 - samples/sec: 7465.79 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:39:03,672 epoch 2 - iter 104/138 - loss 0.89906565 - time (sec): 2.37 - samples/sec: 7456.30 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:39:03,961 epoch 2 - iter 117/138 - loss 0.87844041 - time (sec): 2.66 - samples/sec: 7358.33 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:39:04,220 epoch 2 - iter 130/138 - loss 0.85969199 - time (sec): 2.92 - samples/sec: 7433.93 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:39:04,376 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:04,376 EPOCH 2 done: loss 0.8502 - lr: 0.000045
2023-10-18 14:39:04,736 DEV : loss 0.6120837330818176 - f1-score (micro avg)  0.1379
2023-10-18 14:39:04,740 saving best model
2023-10-18 14:39:04,773 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:05,053 epoch 3 - iter 13/138 - loss 0.64846285 - time (sec): 0.28 - samples/sec: 7263.66 - lr: 0.000044 - momentum: 0.000000
2023-10-18 14:39:05,344 epoch 3 - iter 26/138 - loss 0.66179865 - time (sec): 0.57 - samples/sec: 7581.46 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:39:05,619 epoch 3 - iter 39/138 - loss 0.66324060 - time (sec): 0.84 - samples/sec: 7724.22 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:39:05,898 epoch 3 - iter 52/138 - loss 0.68247883 - time (sec): 1.12 - samples/sec: 7718.13 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:06,180 epoch 3 - iter 65/138 - loss 0.68405829 - time (sec): 1.41 - samples/sec: 7665.98 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:06,470 epoch 3 - iter 78/138 - loss 0.66042721 - time (sec): 1.70 - samples/sec: 7671.28 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:39:06,774 epoch 3 - iter 91/138 - loss 0.64931781 - time (sec): 2.00 - samples/sec: 7674.19 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:39:07,056 epoch 3 - iter 104/138 - loss 0.64777456 - time (sec): 2.28 - samples/sec: 7564.66 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:39:07,352 epoch 3 - iter 117/138 - loss 0.64605280 - time (sec): 2.58 - samples/sec: 7593.44 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:39:07,645 epoch 3 - iter 130/138 - loss 0.64179322 - time (sec): 2.87 - samples/sec: 7523.07 - lr: 0.000039 - momentum: 0.000000
2023-10-18 14:39:07,819 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:07,819 EPOCH 3 done: loss 0.6498 - lr: 0.000039
2023-10-18 14:39:08,306 DEV : loss 0.48717039823532104 - f1-score (micro avg)  0.23
2023-10-18 14:39:08,310 saving best model
2023-10-18 14:39:08,355 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:08,642 epoch 4 - iter 13/138 - loss 0.55535406 - time (sec): 0.29 - samples/sec: 7221.60 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:39:08,914 epoch 4 - iter 26/138 - loss 0.55935695 - time (sec): 0.56 - samples/sec: 7474.97 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:39:09,188 epoch 4 - iter 39/138 - loss 0.59482611 - time (sec): 0.83 - samples/sec: 7440.12 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:09,477 epoch 4 - iter 52/138 - loss 0.61949451 - time (sec): 1.12 - samples/sec: 7714.21 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:09,749 epoch 4 - iter 65/138 - loss 0.61674220 - time (sec): 1.39 - samples/sec: 7559.71 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:39:10,029 epoch 4 - iter 78/138 - loss 0.60877807 - time (sec): 1.67 - samples/sec: 7540.71 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:39:10,306 epoch 4 - iter 91/138 - loss 0.58509220 - time (sec): 1.95 - samples/sec: 7589.24 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:39:10,595 epoch 4 - iter 104/138 - loss 0.58021061 - time (sec): 2.24 - samples/sec: 7731.05 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:39:10,887 epoch 4 - iter 117/138 - loss 0.56510813 - time (sec): 2.53 - samples/sec: 7684.82 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:39:11,162 epoch 4 - iter 130/138 - loss 0.55566967 - time (sec): 2.81 - samples/sec: 7606.32 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:39:11,336 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:11,336 EPOCH 4 done: loss 0.5596 - lr: 0.000034
2023-10-18 14:39:11,703 DEV : loss 0.4194047152996063 - f1-score (micro avg)  0.3063
2023-10-18 14:39:11,707 saving best model
2023-10-18 14:39:11,741 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:12,021 epoch 5 - iter 13/138 - loss 0.51136840 - time (sec): 0.28 - samples/sec: 7505.62 - lr: 0.000033 - momentum: 0.000000
2023-10-18 14:39:12,302 epoch 5 - iter 26/138 - loss 0.49615124 - time (sec): 0.56 - samples/sec: 7504.70 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:39:12,591 epoch 5 - iter 39/138 - loss 0.50925520 - time (sec): 0.85 - samples/sec: 7591.71 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:39:12,899 epoch 5 - iter 52/138 - loss 0.50981525 - time (sec): 1.16 - samples/sec: 7549.90 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:39:13,177 epoch 5 - iter 65/138 - loss 0.49880562 - time (sec): 1.44 - samples/sec: 7421.76 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:39:13,462 epoch 5 - iter 78/138 - loss 0.50193854 - time (sec): 1.72 - samples/sec: 7480.52 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:39:13,734 epoch 5 - iter 91/138 - loss 0.49885792 - time (sec): 1.99 - samples/sec: 7487.27 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:39:14,023 epoch 5 - iter 104/138 - loss 0.49915038 - time (sec): 2.28 - samples/sec: 7534.36 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:39:14,304 epoch 5 - iter 117/138 - loss 0.50338832 - time (sec): 2.56 - samples/sec: 7617.57 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:39:14,577 epoch 5 - iter 130/138 - loss 0.49760914 - time (sec): 2.84 - samples/sec: 7645.35 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:39:14,753 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:14,754 EPOCH 5 done: loss 0.4908 - lr: 0.000028
2023-10-18 14:39:15,119 DEV : loss 0.3583006262779236 - f1-score (micro avg)  0.4839
2023-10-18 14:39:15,123 saving best model
2023-10-18 14:39:15,156 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:15,431 epoch 6 - iter 13/138 - loss 0.37298682 - time (sec): 0.27 - samples/sec: 8006.39 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:39:15,706 epoch 6 - iter 26/138 - loss 0.42290226 - time (sec): 0.55 - samples/sec: 7622.87 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:39:15,982 epoch 6 - iter 39/138 - loss 0.40459662 - time (sec): 0.83 - samples/sec: 7737.35 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:39:16,261 epoch 6 - iter 52/138 - loss 0.43285839 - time (sec): 1.10 - samples/sec: 7679.09 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:39:16,565 epoch 6 - iter 65/138 - loss 0.42995726 - time (sec): 1.41 - samples/sec: 7717.85 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:39:16,859 epoch 6 - iter 78/138 - loss 0.42298722 - time (sec): 1.70 - samples/sec: 7697.88 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:39:17,139 epoch 6 - iter 91/138 - loss 0.42358084 - time (sec): 1.98 - samples/sec: 7701.83 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:39:17,409 epoch 6 - iter 104/138 - loss 0.42767791 - time (sec): 2.25 - samples/sec: 7689.40 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:39:17,682 epoch 6 - iter 117/138 - loss 0.43686698 - time (sec): 2.53 - samples/sec: 7759.09 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:39:17,971 epoch 6 - iter 130/138 - loss 0.43974471 - time (sec): 2.81 - samples/sec: 7723.83 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:39:18,132 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:18,132 EPOCH 6 done: loss 0.4414 - lr: 0.000023
2023-10-18 14:39:18,496 DEV : loss 0.33042845129966736 - f1-score (micro avg)  0.5341
2023-10-18 14:39:18,500 saving best model
2023-10-18 14:39:18,533 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:18,819 epoch 7 - iter 13/138 - loss 0.52247254 - time (sec): 0.29 - samples/sec: 8259.93 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:39:19,098 epoch 7 - iter 26/138 - loss 0.45463455 - time (sec): 0.56 - samples/sec: 7738.39 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:39:19,378 epoch 7 - iter 39/138 - loss 0.45637732 - time (sec): 0.84 - samples/sec: 7668.93 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:39:19,653 epoch 7 - iter 52/138 - loss 0.44819056 - time (sec): 1.12 - samples/sec: 7715.57 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:39:19,931 epoch 7 - iter 65/138 - loss 0.44589353 - time (sec): 1.40 - samples/sec: 7734.39 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:39:20,198 epoch 7 - iter 78/138 - loss 0.45413109 - time (sec): 1.66 - samples/sec: 7714.72 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:39:20,481 epoch 7 - iter 91/138 - loss 0.45309809 - time (sec): 1.95 - samples/sec: 7762.07 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:39:20,751 epoch 7 - iter 104/138 - loss 0.43800951 - time (sec): 2.22 - samples/sec: 7638.51 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:39:21,059 epoch 7 - iter 117/138 - loss 0.43199440 - time (sec): 2.53 - samples/sec: 7601.69 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:39:21,362 epoch 7 - iter 130/138 - loss 0.42818864 - time (sec): 2.83 - samples/sec: 7602.35 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:39:21,537 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:21,537 EPOCH 7 done: loss 0.4193 - lr: 0.000017
2023-10-18 14:39:21,907 DEV : loss 0.32160937786102295 - f1-score (micro avg)  0.5539
2023-10-18 14:39:21,912 saving best model
2023-10-18 14:39:21,944 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:22,183 epoch 8 - iter 13/138 - loss 0.41481649 - time (sec): 0.24 - samples/sec: 9225.48 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:39:22,424 epoch 8 - iter 26/138 - loss 0.39847745 - time (sec): 0.48 - samples/sec: 9408.31 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:39:22,703 epoch 8 - iter 39/138 - loss 0.40199344 - time (sec): 0.76 - samples/sec: 8710.48 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:39:23,007 epoch 8 - iter 52/138 - loss 0.40121457 - time (sec): 1.06 - samples/sec: 8503.64 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:39:23,284 epoch 8 - iter 65/138 - loss 0.38705500 - time (sec): 1.34 - samples/sec: 8405.00 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:39:23,572 epoch 8 - iter 78/138 - loss 0.37921949 - time (sec): 1.63 - samples/sec: 8261.88 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:39:23,832 epoch 8 - iter 91/138 - loss 0.39259301 - time (sec): 1.89 - samples/sec: 8138.72 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:39:24,108 epoch 8 - iter 104/138 - loss 0.39176225 - time (sec): 2.16 - samples/sec: 7980.64 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:39:24,386 epoch 8 - iter 117/138 - loss 0.39795567 - time (sec): 2.44 - samples/sec: 7968.03 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:39:24,665 epoch 8 - iter 130/138 - loss 0.39112207 - time (sec): 2.72 - samples/sec: 7951.38 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:39:24,828 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:24,828 EPOCH 8 done: loss 0.3900 - lr: 0.000012
2023-10-18 14:39:25,195 DEV : loss 0.311394602060318 - f1-score (micro avg)  0.5645
2023-10-18 14:39:25,199 saving best model
2023-10-18 14:39:25,238 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:25,517 epoch 9 - iter 13/138 - loss 0.40021116 - time (sec): 0.28 - samples/sec: 7192.63 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:39:25,807 epoch 9 - iter 26/138 - loss 0.41025763 - time (sec): 0.57 - samples/sec: 7444.13 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:39:26,091 epoch 9 - iter 39/138 - loss 0.39251032 - time (sec): 0.85 - samples/sec: 7450.17 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:39:26,363 epoch 9 - iter 52/138 - loss 0.42319775 - time (sec): 1.12 - samples/sec: 7464.97 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:39:26,637 epoch 9 - iter 65/138 - loss 0.41296078 - time (sec): 1.40 - samples/sec: 7673.43 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:39:26,920 epoch 9 - iter 78/138 - loss 0.42416776 - time (sec): 1.68 - samples/sec: 7665.01 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:39:27,197 epoch 9 - iter 91/138 - loss 0.40835513 - time (sec): 1.96 - samples/sec: 7724.18 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:39:27,469 epoch 9 - iter 104/138 - loss 0.40688293 - time (sec): 2.23 - samples/sec: 7727.59 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:39:27,777 epoch 9 - iter 117/138 - loss 0.39452867 - time (sec): 2.54 - samples/sec: 7707.69 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:39:28,070 epoch 9 - iter 130/138 - loss 0.39162340 - time (sec): 2.83 - samples/sec: 7651.09 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:39:28,256 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:28,257 EPOCH 9 done: loss 0.3905 - lr: 0.000006
2023-10-18 14:39:28,627 DEV : loss 0.3063945472240448 - f1-score (micro avg)  0.5707
2023-10-18 14:39:28,631 saving best model
2023-10-18 14:39:28,669 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:28,966 epoch 10 - iter 13/138 - loss 0.32500790 - time (sec): 0.30 - samples/sec: 7275.01 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:39:29,280 epoch 10 - iter 26/138 - loss 0.35209130 - time (sec): 0.61 - samples/sec: 7560.42 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:39:29,558 epoch 10 - iter 39/138 - loss 0.36398068 - time (sec): 0.89 - samples/sec: 7398.94 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:39:29,839 epoch 10 - iter 52/138 - loss 0.36562887 - time (sec): 1.17 - samples/sec: 7321.56 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:39:30,130 epoch 10 - iter 65/138 - loss 0.36881734 - time (sec): 1.46 - samples/sec: 7271.07 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:39:30,407 epoch 10 - iter 78/138 - loss 0.36648456 - time (sec): 1.74 - samples/sec: 7328.41 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:39:30,701 epoch 10 - iter 91/138 - loss 0.36321895 - time (sec): 2.03 - samples/sec: 7450.28 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:39:30,991 epoch 10 - iter 104/138 - loss 0.37424437 - time (sec): 2.32 - samples/sec: 7464.30 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:39:31,265 epoch 10 - iter 117/138 - loss 0.37687308 - time (sec): 2.60 - samples/sec: 7469.61 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:39:31,563 epoch 10 - iter 130/138 - loss 0.38173002 - time (sec): 2.89 - samples/sec: 7426.40 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:39:31,739 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:31,740 EPOCH 10 done: loss 0.3802 - lr: 0.000000
2023-10-18 14:39:32,107 DEV : loss 0.30349376797676086 - f1-score (micro avg)  0.5666
2023-10-18 14:39:32,140 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:32,141 Loading model from best epoch ...
2023-10-18 14:39:32,222 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 14:39:32,520 
Results:
- F-score (micro) 0.5987
- F-score (macro) 0.3472
- Accuracy 0.4328

By class:
              precision    recall  f1-score   support

       scope     0.5938    0.6477    0.6196       176
        pers     0.8350    0.6719    0.7446       128
        work     0.3265    0.4324    0.3721        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.5903    0.6073    0.5987       382
   macro avg     0.3510    0.3504    0.3472       382
weighted avg     0.6166    0.6073    0.6070       382

2023-10-18 14:39:32,520 ----------------------------------------------------------------------------------------------------