File size: 24,128 Bytes
b2ee0e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 128)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-1): 2 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=128, out_features=128, bias=True)
(key): Linear(in_features=128, out_features=128, bias=True)
(value): Linear(in_features=128, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=128, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=128, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=512, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=128, out_features=128, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=128, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 MultiCorpus: 1100 train + 206 dev + 240 test sentences
- NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Train: 1100 sentences
2023-10-18 14:38:57,878 (train_with_dev=False, train_with_test=False)
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Training Params:
2023-10-18 14:38:57,878 - learning_rate: "5e-05"
2023-10-18 14:38:57,878 - mini_batch_size: "8"
2023-10-18 14:38:57,878 - max_epochs: "10"
2023-10-18 14:38:57,878 - shuffle: "True"
2023-10-18 14:38:57,878 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,878 Plugins:
2023-10-18 14:38:57,878 - TensorboardLogger
2023-10-18 14:38:57,879 - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 14:38:57,879 - metric: "('micro avg', 'f1-score')"
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Computation:
2023-10-18 14:38:57,879 - compute on device: cuda:0
2023-10-18 14:38:57,879 - embedding storage: none
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Model training base path: "hmbench-ajmc/de-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 ----------------------------------------------------------------------------------------------------
2023-10-18 14:38:57,879 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 14:38:58,190 epoch 1 - iter 13/138 - loss 3.42245675 - time (sec): 0.31 - samples/sec: 6894.88 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:38:58,497 epoch 1 - iter 26/138 - loss 3.45651479 - time (sec): 0.62 - samples/sec: 7001.30 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:38:58,820 epoch 1 - iter 39/138 - loss 3.39669444 - time (sec): 0.94 - samples/sec: 7122.95 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:38:59,109 epoch 1 - iter 52/138 - loss 3.29406571 - time (sec): 1.23 - samples/sec: 7213.47 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:38:59,383 epoch 1 - iter 65/138 - loss 3.17358152 - time (sec): 1.50 - samples/sec: 7188.29 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:38:59,685 epoch 1 - iter 78/138 - loss 3.01361420 - time (sec): 1.81 - samples/sec: 7262.93 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:38:59,983 epoch 1 - iter 91/138 - loss 2.85709471 - time (sec): 2.10 - samples/sec: 7281.39 - lr: 0.000033 - momentum: 0.000000
2023-10-18 14:39:00,279 epoch 1 - iter 104/138 - loss 2.68024097 - time (sec): 2.40 - samples/sec: 7265.33 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:00,581 epoch 1 - iter 117/138 - loss 2.50700588 - time (sec): 2.70 - samples/sec: 7245.48 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:00,875 epoch 1 - iter 130/138 - loss 2.38275601 - time (sec): 3.00 - samples/sec: 7216.10 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:01,049 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:01,050 EPOCH 1 done: loss 2.3098 - lr: 0.000047
2023-10-18 14:39:01,297 DEV : loss 0.9283897876739502 - f1-score (micro avg) 0.0
2023-10-18 14:39:01,304 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:01,607 epoch 2 - iter 13/138 - loss 1.09385578 - time (sec): 0.30 - samples/sec: 7627.74 - lr: 0.000050 - momentum: 0.000000
2023-10-18 14:39:01,903 epoch 2 - iter 26/138 - loss 1.05428928 - time (sec): 0.60 - samples/sec: 7716.24 - lr: 0.000049 - momentum: 0.000000
2023-10-18 14:39:02,195 epoch 2 - iter 39/138 - loss 1.01869524 - time (sec): 0.89 - samples/sec: 7577.86 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:39:02,501 epoch 2 - iter 52/138 - loss 1.03347462 - time (sec): 1.20 - samples/sec: 7495.98 - lr: 0.000048 - momentum: 0.000000
2023-10-18 14:39:02,807 epoch 2 - iter 65/138 - loss 0.99740698 - time (sec): 1.50 - samples/sec: 7430.15 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:03,085 epoch 2 - iter 78/138 - loss 0.94137628 - time (sec): 1.78 - samples/sec: 7409.33 - lr: 0.000047 - momentum: 0.000000
2023-10-18 14:39:03,377 epoch 2 - iter 91/138 - loss 0.91957672 - time (sec): 2.07 - samples/sec: 7465.79 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:39:03,672 epoch 2 - iter 104/138 - loss 0.89906565 - time (sec): 2.37 - samples/sec: 7456.30 - lr: 0.000046 - momentum: 0.000000
2023-10-18 14:39:03,961 epoch 2 - iter 117/138 - loss 0.87844041 - time (sec): 2.66 - samples/sec: 7358.33 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:39:04,220 epoch 2 - iter 130/138 - loss 0.85969199 - time (sec): 2.92 - samples/sec: 7433.93 - lr: 0.000045 - momentum: 0.000000
2023-10-18 14:39:04,376 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:04,376 EPOCH 2 done: loss 0.8502 - lr: 0.000045
2023-10-18 14:39:04,736 DEV : loss 0.6120837330818176 - f1-score (micro avg) 0.1379
2023-10-18 14:39:04,740 saving best model
2023-10-18 14:39:04,773 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:05,053 epoch 3 - iter 13/138 - loss 0.64846285 - time (sec): 0.28 - samples/sec: 7263.66 - lr: 0.000044 - momentum: 0.000000
2023-10-18 14:39:05,344 epoch 3 - iter 26/138 - loss 0.66179865 - time (sec): 0.57 - samples/sec: 7581.46 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:39:05,619 epoch 3 - iter 39/138 - loss 0.66324060 - time (sec): 0.84 - samples/sec: 7724.22 - lr: 0.000043 - momentum: 0.000000
2023-10-18 14:39:05,898 epoch 3 - iter 52/138 - loss 0.68247883 - time (sec): 1.12 - samples/sec: 7718.13 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:06,180 epoch 3 - iter 65/138 - loss 0.68405829 - time (sec): 1.41 - samples/sec: 7665.98 - lr: 0.000042 - momentum: 0.000000
2023-10-18 14:39:06,470 epoch 3 - iter 78/138 - loss 0.66042721 - time (sec): 1.70 - samples/sec: 7671.28 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:39:06,774 epoch 3 - iter 91/138 - loss 0.64931781 - time (sec): 2.00 - samples/sec: 7674.19 - lr: 0.000041 - momentum: 0.000000
2023-10-18 14:39:07,056 epoch 3 - iter 104/138 - loss 0.64777456 - time (sec): 2.28 - samples/sec: 7564.66 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:39:07,352 epoch 3 - iter 117/138 - loss 0.64605280 - time (sec): 2.58 - samples/sec: 7593.44 - lr: 0.000040 - momentum: 0.000000
2023-10-18 14:39:07,645 epoch 3 - iter 130/138 - loss 0.64179322 - time (sec): 2.87 - samples/sec: 7523.07 - lr: 0.000039 - momentum: 0.000000
2023-10-18 14:39:07,819 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:07,819 EPOCH 3 done: loss 0.6498 - lr: 0.000039
2023-10-18 14:39:08,306 DEV : loss 0.48717039823532104 - f1-score (micro avg) 0.23
2023-10-18 14:39:08,310 saving best model
2023-10-18 14:39:08,355 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:08,642 epoch 4 - iter 13/138 - loss 0.55535406 - time (sec): 0.29 - samples/sec: 7221.60 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:39:08,914 epoch 4 - iter 26/138 - loss 0.55935695 - time (sec): 0.56 - samples/sec: 7474.97 - lr: 0.000038 - momentum: 0.000000
2023-10-18 14:39:09,188 epoch 4 - iter 39/138 - loss 0.59482611 - time (sec): 0.83 - samples/sec: 7440.12 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:09,477 epoch 4 - iter 52/138 - loss 0.61949451 - time (sec): 1.12 - samples/sec: 7714.21 - lr: 0.000037 - momentum: 0.000000
2023-10-18 14:39:09,749 epoch 4 - iter 65/138 - loss 0.61674220 - time (sec): 1.39 - samples/sec: 7559.71 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:39:10,029 epoch 4 - iter 78/138 - loss 0.60877807 - time (sec): 1.67 - samples/sec: 7540.71 - lr: 0.000036 - momentum: 0.000000
2023-10-18 14:39:10,306 epoch 4 - iter 91/138 - loss 0.58509220 - time (sec): 1.95 - samples/sec: 7589.24 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:39:10,595 epoch 4 - iter 104/138 - loss 0.58021061 - time (sec): 2.24 - samples/sec: 7731.05 - lr: 0.000035 - momentum: 0.000000
2023-10-18 14:39:10,887 epoch 4 - iter 117/138 - loss 0.56510813 - time (sec): 2.53 - samples/sec: 7684.82 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:39:11,162 epoch 4 - iter 130/138 - loss 0.55566967 - time (sec): 2.81 - samples/sec: 7606.32 - lr: 0.000034 - momentum: 0.000000
2023-10-18 14:39:11,336 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:11,336 EPOCH 4 done: loss 0.5596 - lr: 0.000034
2023-10-18 14:39:11,703 DEV : loss 0.4194047152996063 - f1-score (micro avg) 0.3063
2023-10-18 14:39:11,707 saving best model
2023-10-18 14:39:11,741 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:12,021 epoch 5 - iter 13/138 - loss 0.51136840 - time (sec): 0.28 - samples/sec: 7505.62 - lr: 0.000033 - momentum: 0.000000
2023-10-18 14:39:12,302 epoch 5 - iter 26/138 - loss 0.49615124 - time (sec): 0.56 - samples/sec: 7504.70 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:39:12,591 epoch 5 - iter 39/138 - loss 0.50925520 - time (sec): 0.85 - samples/sec: 7591.71 - lr: 0.000032 - momentum: 0.000000
2023-10-18 14:39:12,899 epoch 5 - iter 52/138 - loss 0.50981525 - time (sec): 1.16 - samples/sec: 7549.90 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:39:13,177 epoch 5 - iter 65/138 - loss 0.49880562 - time (sec): 1.44 - samples/sec: 7421.76 - lr: 0.000031 - momentum: 0.000000
2023-10-18 14:39:13,462 epoch 5 - iter 78/138 - loss 0.50193854 - time (sec): 1.72 - samples/sec: 7480.52 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:39:13,734 epoch 5 - iter 91/138 - loss 0.49885792 - time (sec): 1.99 - samples/sec: 7487.27 - lr: 0.000030 - momentum: 0.000000
2023-10-18 14:39:14,023 epoch 5 - iter 104/138 - loss 0.49915038 - time (sec): 2.28 - samples/sec: 7534.36 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:39:14,304 epoch 5 - iter 117/138 - loss 0.50338832 - time (sec): 2.56 - samples/sec: 7617.57 - lr: 0.000029 - momentum: 0.000000
2023-10-18 14:39:14,577 epoch 5 - iter 130/138 - loss 0.49760914 - time (sec): 2.84 - samples/sec: 7645.35 - lr: 0.000028 - momentum: 0.000000
2023-10-18 14:39:14,753 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:14,754 EPOCH 5 done: loss 0.4908 - lr: 0.000028
2023-10-18 14:39:15,119 DEV : loss 0.3583006262779236 - f1-score (micro avg) 0.4839
2023-10-18 14:39:15,123 saving best model
2023-10-18 14:39:15,156 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:15,431 epoch 6 - iter 13/138 - loss 0.37298682 - time (sec): 0.27 - samples/sec: 8006.39 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:39:15,706 epoch 6 - iter 26/138 - loss 0.42290226 - time (sec): 0.55 - samples/sec: 7622.87 - lr: 0.000027 - momentum: 0.000000
2023-10-18 14:39:15,982 epoch 6 - iter 39/138 - loss 0.40459662 - time (sec): 0.83 - samples/sec: 7737.35 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:39:16,261 epoch 6 - iter 52/138 - loss 0.43285839 - time (sec): 1.10 - samples/sec: 7679.09 - lr: 0.000026 - momentum: 0.000000
2023-10-18 14:39:16,565 epoch 6 - iter 65/138 - loss 0.42995726 - time (sec): 1.41 - samples/sec: 7717.85 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:39:16,859 epoch 6 - iter 78/138 - loss 0.42298722 - time (sec): 1.70 - samples/sec: 7697.88 - lr: 0.000025 - momentum: 0.000000
2023-10-18 14:39:17,139 epoch 6 - iter 91/138 - loss 0.42358084 - time (sec): 1.98 - samples/sec: 7701.83 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:39:17,409 epoch 6 - iter 104/138 - loss 0.42767791 - time (sec): 2.25 - samples/sec: 7689.40 - lr: 0.000024 - momentum: 0.000000
2023-10-18 14:39:17,682 epoch 6 - iter 117/138 - loss 0.43686698 - time (sec): 2.53 - samples/sec: 7759.09 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:39:17,971 epoch 6 - iter 130/138 - loss 0.43974471 - time (sec): 2.81 - samples/sec: 7723.83 - lr: 0.000023 - momentum: 0.000000
2023-10-18 14:39:18,132 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:18,132 EPOCH 6 done: loss 0.4414 - lr: 0.000023
2023-10-18 14:39:18,496 DEV : loss 0.33042845129966736 - f1-score (micro avg) 0.5341
2023-10-18 14:39:18,500 saving best model
2023-10-18 14:39:18,533 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:18,819 epoch 7 - iter 13/138 - loss 0.52247254 - time (sec): 0.29 - samples/sec: 8259.93 - lr: 0.000022 - momentum: 0.000000
2023-10-18 14:39:19,098 epoch 7 - iter 26/138 - loss 0.45463455 - time (sec): 0.56 - samples/sec: 7738.39 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:39:19,378 epoch 7 - iter 39/138 - loss 0.45637732 - time (sec): 0.84 - samples/sec: 7668.93 - lr: 0.000021 - momentum: 0.000000
2023-10-18 14:39:19,653 epoch 7 - iter 52/138 - loss 0.44819056 - time (sec): 1.12 - samples/sec: 7715.57 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:39:19,931 epoch 7 - iter 65/138 - loss 0.44589353 - time (sec): 1.40 - samples/sec: 7734.39 - lr: 0.000020 - momentum: 0.000000
2023-10-18 14:39:20,198 epoch 7 - iter 78/138 - loss 0.45413109 - time (sec): 1.66 - samples/sec: 7714.72 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:39:20,481 epoch 7 - iter 91/138 - loss 0.45309809 - time (sec): 1.95 - samples/sec: 7762.07 - lr: 0.000019 - momentum: 0.000000
2023-10-18 14:39:20,751 epoch 7 - iter 104/138 - loss 0.43800951 - time (sec): 2.22 - samples/sec: 7638.51 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:39:21,059 epoch 7 - iter 117/138 - loss 0.43199440 - time (sec): 2.53 - samples/sec: 7601.69 - lr: 0.000018 - momentum: 0.000000
2023-10-18 14:39:21,362 epoch 7 - iter 130/138 - loss 0.42818864 - time (sec): 2.83 - samples/sec: 7602.35 - lr: 0.000017 - momentum: 0.000000
2023-10-18 14:39:21,537 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:21,537 EPOCH 7 done: loss 0.4193 - lr: 0.000017
2023-10-18 14:39:21,907 DEV : loss 0.32160937786102295 - f1-score (micro avg) 0.5539
2023-10-18 14:39:21,912 saving best model
2023-10-18 14:39:21,944 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:22,183 epoch 8 - iter 13/138 - loss 0.41481649 - time (sec): 0.24 - samples/sec: 9225.48 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:39:22,424 epoch 8 - iter 26/138 - loss 0.39847745 - time (sec): 0.48 - samples/sec: 9408.31 - lr: 0.000016 - momentum: 0.000000
2023-10-18 14:39:22,703 epoch 8 - iter 39/138 - loss 0.40199344 - time (sec): 0.76 - samples/sec: 8710.48 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:39:23,007 epoch 8 - iter 52/138 - loss 0.40121457 - time (sec): 1.06 - samples/sec: 8503.64 - lr: 0.000015 - momentum: 0.000000
2023-10-18 14:39:23,284 epoch 8 - iter 65/138 - loss 0.38705500 - time (sec): 1.34 - samples/sec: 8405.00 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:39:23,572 epoch 8 - iter 78/138 - loss 0.37921949 - time (sec): 1.63 - samples/sec: 8261.88 - lr: 0.000014 - momentum: 0.000000
2023-10-18 14:39:23,832 epoch 8 - iter 91/138 - loss 0.39259301 - time (sec): 1.89 - samples/sec: 8138.72 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:39:24,108 epoch 8 - iter 104/138 - loss 0.39176225 - time (sec): 2.16 - samples/sec: 7980.64 - lr: 0.000013 - momentum: 0.000000
2023-10-18 14:39:24,386 epoch 8 - iter 117/138 - loss 0.39795567 - time (sec): 2.44 - samples/sec: 7968.03 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:39:24,665 epoch 8 - iter 130/138 - loss 0.39112207 - time (sec): 2.72 - samples/sec: 7951.38 - lr: 0.000012 - momentum: 0.000000
2023-10-18 14:39:24,828 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:24,828 EPOCH 8 done: loss 0.3900 - lr: 0.000012
2023-10-18 14:39:25,195 DEV : loss 0.311394602060318 - f1-score (micro avg) 0.5645
2023-10-18 14:39:25,199 saving best model
2023-10-18 14:39:25,238 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:25,517 epoch 9 - iter 13/138 - loss 0.40021116 - time (sec): 0.28 - samples/sec: 7192.63 - lr: 0.000011 - momentum: 0.000000
2023-10-18 14:39:25,807 epoch 9 - iter 26/138 - loss 0.41025763 - time (sec): 0.57 - samples/sec: 7444.13 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:39:26,091 epoch 9 - iter 39/138 - loss 0.39251032 - time (sec): 0.85 - samples/sec: 7450.17 - lr: 0.000010 - momentum: 0.000000
2023-10-18 14:39:26,363 epoch 9 - iter 52/138 - loss 0.42319775 - time (sec): 1.12 - samples/sec: 7464.97 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:39:26,637 epoch 9 - iter 65/138 - loss 0.41296078 - time (sec): 1.40 - samples/sec: 7673.43 - lr: 0.000009 - momentum: 0.000000
2023-10-18 14:39:26,920 epoch 9 - iter 78/138 - loss 0.42416776 - time (sec): 1.68 - samples/sec: 7665.01 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:39:27,197 epoch 9 - iter 91/138 - loss 0.40835513 - time (sec): 1.96 - samples/sec: 7724.18 - lr: 0.000008 - momentum: 0.000000
2023-10-18 14:39:27,469 epoch 9 - iter 104/138 - loss 0.40688293 - time (sec): 2.23 - samples/sec: 7727.59 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:39:27,777 epoch 9 - iter 117/138 - loss 0.39452867 - time (sec): 2.54 - samples/sec: 7707.69 - lr: 0.000007 - momentum: 0.000000
2023-10-18 14:39:28,070 epoch 9 - iter 130/138 - loss 0.39162340 - time (sec): 2.83 - samples/sec: 7651.09 - lr: 0.000006 - momentum: 0.000000
2023-10-18 14:39:28,256 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:28,257 EPOCH 9 done: loss 0.3905 - lr: 0.000006
2023-10-18 14:39:28,627 DEV : loss 0.3063945472240448 - f1-score (micro avg) 0.5707
2023-10-18 14:39:28,631 saving best model
2023-10-18 14:39:28,669 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:28,966 epoch 10 - iter 13/138 - loss 0.32500790 - time (sec): 0.30 - samples/sec: 7275.01 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:39:29,280 epoch 10 - iter 26/138 - loss 0.35209130 - time (sec): 0.61 - samples/sec: 7560.42 - lr: 0.000005 - momentum: 0.000000
2023-10-18 14:39:29,558 epoch 10 - iter 39/138 - loss 0.36398068 - time (sec): 0.89 - samples/sec: 7398.94 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:39:29,839 epoch 10 - iter 52/138 - loss 0.36562887 - time (sec): 1.17 - samples/sec: 7321.56 - lr: 0.000004 - momentum: 0.000000
2023-10-18 14:39:30,130 epoch 10 - iter 65/138 - loss 0.36881734 - time (sec): 1.46 - samples/sec: 7271.07 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:39:30,407 epoch 10 - iter 78/138 - loss 0.36648456 - time (sec): 1.74 - samples/sec: 7328.41 - lr: 0.000003 - momentum: 0.000000
2023-10-18 14:39:30,701 epoch 10 - iter 91/138 - loss 0.36321895 - time (sec): 2.03 - samples/sec: 7450.28 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:39:30,991 epoch 10 - iter 104/138 - loss 0.37424437 - time (sec): 2.32 - samples/sec: 7464.30 - lr: 0.000002 - momentum: 0.000000
2023-10-18 14:39:31,265 epoch 10 - iter 117/138 - loss 0.37687308 - time (sec): 2.60 - samples/sec: 7469.61 - lr: 0.000001 - momentum: 0.000000
2023-10-18 14:39:31,563 epoch 10 - iter 130/138 - loss 0.38173002 - time (sec): 2.89 - samples/sec: 7426.40 - lr: 0.000000 - momentum: 0.000000
2023-10-18 14:39:31,739 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:31,740 EPOCH 10 done: loss 0.3802 - lr: 0.000000
2023-10-18 14:39:32,107 DEV : loss 0.30349376797676086 - f1-score (micro avg) 0.5666
2023-10-18 14:39:32,140 ----------------------------------------------------------------------------------------------------
2023-10-18 14:39:32,141 Loading model from best epoch ...
2023-10-18 14:39:32,222 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 14:39:32,520
Results:
- F-score (micro) 0.5987
- F-score (macro) 0.3472
- Accuracy 0.4328
By class:
precision recall f1-score support
scope 0.5938 0.6477 0.6196 176
pers 0.8350 0.6719 0.7446 128
work 0.3265 0.4324 0.3721 74
object 0.0000 0.0000 0.0000 2
loc 0.0000 0.0000 0.0000 2
micro avg 0.5903 0.6073 0.5987 382
macro avg 0.3510 0.3504 0.3472 382
weighted avg 0.6166 0.6073 0.6070 382
2023-10-18 14:39:32,520 ----------------------------------------------------------------------------------------------------
|