File size: 25,083 Bytes
b204486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-07 01:15:22,530 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,532 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-07 01:15:22,532 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,532 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-07 01:15:22,532 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,532 Train:  1100 sentences
2023-10-07 01:15:22,532         (train_with_dev=False, train_with_test=False)
2023-10-07 01:15:22,532 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,532 Training Params:
2023-10-07 01:15:22,532  - learning_rate: "0.00015" 
2023-10-07 01:15:22,532  - mini_batch_size: "8"
2023-10-07 01:15:22,532  - max_epochs: "10"
2023-10-07 01:15:22,532  - shuffle: "True"
2023-10-07 01:15:22,532 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,532 Plugins:
2023-10-07 01:15:22,532  - TensorboardLogger
2023-10-07 01:15:22,532  - LinearScheduler | warmup_fraction: '0.1'
2023-10-07 01:15:22,532 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,533 Final evaluation on model from best epoch (best-model.pt)
2023-10-07 01:15:22,533  - metric: "('micro avg', 'f1-score')"
2023-10-07 01:15:22,533 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,533 Computation:
2023-10-07 01:15:22,533  - compute on device: cuda:0
2023-10-07 01:15:22,533  - embedding storage: none
2023-10-07 01:15:22,533 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,533 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4"
2023-10-07 01:15:22,533 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,533 ----------------------------------------------------------------------------------------------------
2023-10-07 01:15:22,533 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-07 01:15:31,538 epoch 1 - iter 13/138 - loss 3.24828859 - time (sec): 9.00 - samples/sec: 224.23 - lr: 0.000013 - momentum: 0.000000
2023-10-07 01:15:40,922 epoch 1 - iter 26/138 - loss 3.24306645 - time (sec): 18.39 - samples/sec: 229.50 - lr: 0.000027 - momentum: 0.000000
2023-10-07 01:15:50,749 epoch 1 - iter 39/138 - loss 3.23291278 - time (sec): 28.22 - samples/sec: 232.92 - lr: 0.000041 - momentum: 0.000000
2023-10-07 01:16:00,629 epoch 1 - iter 52/138 - loss 3.21835524 - time (sec): 38.09 - samples/sec: 232.53 - lr: 0.000055 - momentum: 0.000000
2023-10-07 01:16:09,702 epoch 1 - iter 65/138 - loss 3.19377640 - time (sec): 47.17 - samples/sec: 230.75 - lr: 0.000070 - momentum: 0.000000
2023-10-07 01:16:19,190 epoch 1 - iter 78/138 - loss 3.14821775 - time (sec): 56.66 - samples/sec: 228.98 - lr: 0.000084 - momentum: 0.000000
2023-10-07 01:16:28,019 epoch 1 - iter 91/138 - loss 3.08866051 - time (sec): 65.48 - samples/sec: 228.63 - lr: 0.000098 - momentum: 0.000000
2023-10-07 01:16:38,138 epoch 1 - iter 104/138 - loss 3.00670410 - time (sec): 75.60 - samples/sec: 229.38 - lr: 0.000112 - momentum: 0.000000
2023-10-07 01:16:47,382 epoch 1 - iter 117/138 - loss 2.93035609 - time (sec): 84.85 - samples/sec: 229.73 - lr: 0.000126 - momentum: 0.000000
2023-10-07 01:16:56,570 epoch 1 - iter 130/138 - loss 2.85220031 - time (sec): 94.04 - samples/sec: 228.72 - lr: 0.000140 - momentum: 0.000000
2023-10-07 01:17:02,058 ----------------------------------------------------------------------------------------------------
2023-10-07 01:17:02,059 EPOCH 1 done: loss 2.8027 - lr: 0.000140
2023-10-07 01:17:08,371 DEV : loss 1.8371483087539673 - f1-score (micro avg)  0.0
2023-10-07 01:17:08,376 ----------------------------------------------------------------------------------------------------
2023-10-07 01:17:17,992 epoch 2 - iter 13/138 - loss 1.78002652 - time (sec): 9.61 - samples/sec: 232.76 - lr: 0.000149 - momentum: 0.000000
2023-10-07 01:17:27,209 epoch 2 - iter 26/138 - loss 1.70494439 - time (sec): 18.83 - samples/sec: 224.88 - lr: 0.000147 - momentum: 0.000000
2023-10-07 01:17:35,792 epoch 2 - iter 39/138 - loss 1.60987014 - time (sec): 27.42 - samples/sec: 221.41 - lr: 0.000145 - momentum: 0.000000
2023-10-07 01:17:45,114 epoch 2 - iter 52/138 - loss 1.51958579 - time (sec): 36.74 - samples/sec: 224.76 - lr: 0.000144 - momentum: 0.000000
2023-10-07 01:17:54,597 epoch 2 - iter 65/138 - loss 1.42527343 - time (sec): 46.22 - samples/sec: 225.77 - lr: 0.000142 - momentum: 0.000000
2023-10-07 01:18:04,025 epoch 2 - iter 78/138 - loss 1.35043793 - time (sec): 55.65 - samples/sec: 225.44 - lr: 0.000141 - momentum: 0.000000
2023-10-07 01:18:13,985 epoch 2 - iter 91/138 - loss 1.29544695 - time (sec): 65.61 - samples/sec: 226.39 - lr: 0.000139 - momentum: 0.000000
2023-10-07 01:18:23,880 epoch 2 - iter 104/138 - loss 1.23545553 - time (sec): 75.50 - samples/sec: 226.96 - lr: 0.000138 - momentum: 0.000000
2023-10-07 01:18:32,973 epoch 2 - iter 117/138 - loss 1.21725016 - time (sec): 84.60 - samples/sec: 228.38 - lr: 0.000136 - momentum: 0.000000
2023-10-07 01:18:42,496 epoch 2 - iter 130/138 - loss 1.17433177 - time (sec): 94.12 - samples/sec: 228.75 - lr: 0.000134 - momentum: 0.000000
2023-10-07 01:18:47,903 ----------------------------------------------------------------------------------------------------
2023-10-07 01:18:47,903 EPOCH 2 done: loss 1.1550 - lr: 0.000134
2023-10-07 01:18:54,337 DEV : loss 0.845672607421875 - f1-score (micro avg)  0.0
2023-10-07 01:18:54,342 ----------------------------------------------------------------------------------------------------
2023-10-07 01:19:03,480 epoch 3 - iter 13/138 - loss 0.76719476 - time (sec): 9.14 - samples/sec: 225.45 - lr: 0.000132 - momentum: 0.000000
2023-10-07 01:19:12,704 epoch 3 - iter 26/138 - loss 0.75545689 - time (sec): 18.36 - samples/sec: 229.73 - lr: 0.000130 - momentum: 0.000000
2023-10-07 01:19:22,852 epoch 3 - iter 39/138 - loss 0.69073662 - time (sec): 28.51 - samples/sec: 230.21 - lr: 0.000129 - momentum: 0.000000
2023-10-07 01:19:32,459 epoch 3 - iter 52/138 - loss 0.64569560 - time (sec): 38.12 - samples/sec: 229.11 - lr: 0.000127 - momentum: 0.000000
2023-10-07 01:19:41,993 epoch 3 - iter 65/138 - loss 0.63526192 - time (sec): 47.65 - samples/sec: 229.30 - lr: 0.000126 - momentum: 0.000000
2023-10-07 01:19:51,185 epoch 3 - iter 78/138 - loss 0.61936500 - time (sec): 56.84 - samples/sec: 228.12 - lr: 0.000124 - momentum: 0.000000
2023-10-07 01:20:00,681 epoch 3 - iter 91/138 - loss 0.59743899 - time (sec): 66.34 - samples/sec: 229.93 - lr: 0.000123 - momentum: 0.000000
2023-10-07 01:20:10,114 epoch 3 - iter 104/138 - loss 0.58003767 - time (sec): 75.77 - samples/sec: 229.74 - lr: 0.000121 - momentum: 0.000000
2023-10-07 01:20:19,561 epoch 3 - iter 117/138 - loss 0.56742023 - time (sec): 85.22 - samples/sec: 229.06 - lr: 0.000119 - momentum: 0.000000
2023-10-07 01:20:28,595 epoch 3 - iter 130/138 - loss 0.55633486 - time (sec): 94.25 - samples/sec: 228.21 - lr: 0.000118 - momentum: 0.000000
2023-10-07 01:20:34,112 ----------------------------------------------------------------------------------------------------
2023-10-07 01:20:34,113 EPOCH 3 done: loss 0.5499 - lr: 0.000118
2023-10-07 01:20:40,531 DEV : loss 0.4134528338909149 - f1-score (micro avg)  0.5185
2023-10-07 01:20:40,537 saving best model
2023-10-07 01:20:41,383 ----------------------------------------------------------------------------------------------------
2023-10-07 01:20:49,674 epoch 4 - iter 13/138 - loss 0.41651853 - time (sec): 8.29 - samples/sec: 206.66 - lr: 0.000115 - momentum: 0.000000
2023-10-07 01:20:59,027 epoch 4 - iter 26/138 - loss 0.37358104 - time (sec): 17.64 - samples/sec: 219.36 - lr: 0.000114 - momentum: 0.000000
2023-10-07 01:21:08,798 epoch 4 - iter 39/138 - loss 0.37215514 - time (sec): 27.41 - samples/sec: 225.62 - lr: 0.000112 - momentum: 0.000000
2023-10-07 01:21:18,418 epoch 4 - iter 52/138 - loss 0.37238785 - time (sec): 37.03 - samples/sec: 229.25 - lr: 0.000111 - momentum: 0.000000
2023-10-07 01:21:27,308 epoch 4 - iter 65/138 - loss 0.37104112 - time (sec): 45.92 - samples/sec: 228.16 - lr: 0.000109 - momentum: 0.000000
2023-10-07 01:21:36,664 epoch 4 - iter 78/138 - loss 0.35234194 - time (sec): 55.28 - samples/sec: 228.37 - lr: 0.000107 - momentum: 0.000000
2023-10-07 01:21:45,175 epoch 4 - iter 91/138 - loss 0.34394455 - time (sec): 63.79 - samples/sec: 226.31 - lr: 0.000106 - momentum: 0.000000
2023-10-07 01:21:55,033 epoch 4 - iter 104/138 - loss 0.33542247 - time (sec): 73.65 - samples/sec: 227.54 - lr: 0.000104 - momentum: 0.000000
2023-10-07 01:22:04,919 epoch 4 - iter 117/138 - loss 0.33674126 - time (sec): 83.53 - samples/sec: 228.41 - lr: 0.000103 - momentum: 0.000000
2023-10-07 01:22:15,458 epoch 4 - iter 130/138 - loss 0.32805211 - time (sec): 94.07 - samples/sec: 229.30 - lr: 0.000101 - momentum: 0.000000
2023-10-07 01:22:21,001 ----------------------------------------------------------------------------------------------------
2023-10-07 01:22:21,001 EPOCH 4 done: loss 0.3246 - lr: 0.000101
2023-10-07 01:22:27,423 DEV : loss 0.2694088816642761 - f1-score (micro avg)  0.7589
2023-10-07 01:22:27,428 saving best model
2023-10-07 01:22:28,303 ----------------------------------------------------------------------------------------------------
2023-10-07 01:22:37,145 epoch 5 - iter 13/138 - loss 0.30090111 - time (sec): 8.84 - samples/sec: 237.87 - lr: 0.000099 - momentum: 0.000000
2023-10-07 01:22:46,256 epoch 5 - iter 26/138 - loss 0.26577049 - time (sec): 17.95 - samples/sec: 226.73 - lr: 0.000097 - momentum: 0.000000
2023-10-07 01:22:56,278 epoch 5 - iter 39/138 - loss 0.22896971 - time (sec): 27.97 - samples/sec: 229.18 - lr: 0.000096 - momentum: 0.000000
2023-10-07 01:23:05,442 epoch 5 - iter 52/138 - loss 0.21383942 - time (sec): 37.14 - samples/sec: 228.64 - lr: 0.000094 - momentum: 0.000000
2023-10-07 01:23:14,990 epoch 5 - iter 65/138 - loss 0.21585880 - time (sec): 46.69 - samples/sec: 229.79 - lr: 0.000092 - momentum: 0.000000
2023-10-07 01:23:24,460 epoch 5 - iter 78/138 - loss 0.21291348 - time (sec): 56.16 - samples/sec: 229.15 - lr: 0.000091 - momentum: 0.000000
2023-10-07 01:23:33,904 epoch 5 - iter 91/138 - loss 0.21386054 - time (sec): 65.60 - samples/sec: 229.06 - lr: 0.000089 - momentum: 0.000000
2023-10-07 01:23:43,519 epoch 5 - iter 104/138 - loss 0.21509638 - time (sec): 75.21 - samples/sec: 229.56 - lr: 0.000088 - momentum: 0.000000
2023-10-07 01:23:53,245 epoch 5 - iter 117/138 - loss 0.21472409 - time (sec): 84.94 - samples/sec: 230.45 - lr: 0.000086 - momentum: 0.000000
2023-10-07 01:24:02,719 epoch 5 - iter 130/138 - loss 0.21814584 - time (sec): 94.41 - samples/sec: 230.02 - lr: 0.000085 - momentum: 0.000000
2023-10-07 01:24:07,647 ----------------------------------------------------------------------------------------------------
2023-10-07 01:24:07,647 EPOCH 5 done: loss 0.2169 - lr: 0.000085
2023-10-07 01:24:14,043 DEV : loss 0.19746224582195282 - f1-score (micro avg)  0.7865
2023-10-07 01:24:14,048 saving best model
2023-10-07 01:24:14,906 ----------------------------------------------------------------------------------------------------
2023-10-07 01:24:24,467 epoch 6 - iter 13/138 - loss 0.15336532 - time (sec): 9.56 - samples/sec: 241.22 - lr: 0.000082 - momentum: 0.000000
2023-10-07 01:24:34,331 epoch 6 - iter 26/138 - loss 0.16846546 - time (sec): 19.42 - samples/sec: 236.46 - lr: 0.000080 - momentum: 0.000000
2023-10-07 01:24:43,301 epoch 6 - iter 39/138 - loss 0.17300366 - time (sec): 28.39 - samples/sec: 234.63 - lr: 0.000079 - momentum: 0.000000
2023-10-07 01:24:52,559 epoch 6 - iter 52/138 - loss 0.16181288 - time (sec): 37.65 - samples/sec: 230.64 - lr: 0.000077 - momentum: 0.000000
2023-10-07 01:25:01,549 epoch 6 - iter 65/138 - loss 0.16255739 - time (sec): 46.64 - samples/sec: 229.11 - lr: 0.000076 - momentum: 0.000000
2023-10-07 01:25:11,148 epoch 6 - iter 78/138 - loss 0.16099642 - time (sec): 56.24 - samples/sec: 229.16 - lr: 0.000074 - momentum: 0.000000
2023-10-07 01:25:20,519 epoch 6 - iter 91/138 - loss 0.16207104 - time (sec): 65.61 - samples/sec: 228.56 - lr: 0.000073 - momentum: 0.000000
2023-10-07 01:25:30,256 epoch 6 - iter 104/138 - loss 0.15770321 - time (sec): 75.35 - samples/sec: 229.04 - lr: 0.000071 - momentum: 0.000000
2023-10-07 01:25:39,585 epoch 6 - iter 117/138 - loss 0.15414663 - time (sec): 84.68 - samples/sec: 228.34 - lr: 0.000070 - momentum: 0.000000
2023-10-07 01:25:48,985 epoch 6 - iter 130/138 - loss 0.15062209 - time (sec): 94.08 - samples/sec: 227.10 - lr: 0.000068 - momentum: 0.000000
2023-10-07 01:25:55,024 ----------------------------------------------------------------------------------------------------
2023-10-07 01:25:55,025 EPOCH 6 done: loss 0.1525 - lr: 0.000068
2023-10-07 01:26:01,693 DEV : loss 0.15915270149707794 - f1-score (micro avg)  0.8373
2023-10-07 01:26:01,698 saving best model
2023-10-07 01:26:02,575 ----------------------------------------------------------------------------------------------------
2023-10-07 01:26:12,347 epoch 7 - iter 13/138 - loss 0.13219699 - time (sec): 9.77 - samples/sec: 227.53 - lr: 0.000065 - momentum: 0.000000
2023-10-07 01:26:21,486 epoch 7 - iter 26/138 - loss 0.13025357 - time (sec): 18.91 - samples/sec: 227.82 - lr: 0.000064 - momentum: 0.000000
2023-10-07 01:26:30,405 epoch 7 - iter 39/138 - loss 0.13191905 - time (sec): 27.83 - samples/sec: 222.90 - lr: 0.000062 - momentum: 0.000000
2023-10-07 01:26:40,469 epoch 7 - iter 52/138 - loss 0.12075848 - time (sec): 37.89 - samples/sec: 221.21 - lr: 0.000061 - momentum: 0.000000
2023-10-07 01:26:49,595 epoch 7 - iter 65/138 - loss 0.11734169 - time (sec): 47.02 - samples/sec: 221.11 - lr: 0.000059 - momentum: 0.000000
2023-10-07 01:26:58,753 epoch 7 - iter 78/138 - loss 0.11326191 - time (sec): 56.18 - samples/sec: 220.45 - lr: 0.000058 - momentum: 0.000000
2023-10-07 01:27:09,090 epoch 7 - iter 91/138 - loss 0.11408908 - time (sec): 66.51 - samples/sec: 222.26 - lr: 0.000056 - momentum: 0.000000
2023-10-07 01:27:18,707 epoch 7 - iter 104/138 - loss 0.11252134 - time (sec): 76.13 - samples/sec: 223.84 - lr: 0.000054 - momentum: 0.000000
2023-10-07 01:27:28,634 epoch 7 - iter 117/138 - loss 0.11428033 - time (sec): 86.06 - samples/sec: 224.33 - lr: 0.000053 - momentum: 0.000000
2023-10-07 01:27:38,838 epoch 7 - iter 130/138 - loss 0.11554929 - time (sec): 96.26 - samples/sec: 224.36 - lr: 0.000051 - momentum: 0.000000
2023-10-07 01:27:44,390 ----------------------------------------------------------------------------------------------------
2023-10-07 01:27:44,390 EPOCH 7 done: loss 0.1145 - lr: 0.000051
2023-10-07 01:27:51,074 DEV : loss 0.14204637706279755 - f1-score (micro avg)  0.8422
2023-10-07 01:27:51,081 saving best model
2023-10-07 01:27:51,965 ----------------------------------------------------------------------------------------------------
2023-10-07 01:28:01,706 epoch 8 - iter 13/138 - loss 0.07932656 - time (sec): 9.74 - samples/sec: 227.12 - lr: 0.000049 - momentum: 0.000000
2023-10-07 01:28:11,678 epoch 8 - iter 26/138 - loss 0.07910965 - time (sec): 19.71 - samples/sec: 227.39 - lr: 0.000047 - momentum: 0.000000
2023-10-07 01:28:20,730 epoch 8 - iter 39/138 - loss 0.08042982 - time (sec): 28.76 - samples/sec: 224.98 - lr: 0.000046 - momentum: 0.000000
2023-10-07 01:28:30,382 epoch 8 - iter 52/138 - loss 0.08587795 - time (sec): 38.41 - samples/sec: 225.30 - lr: 0.000044 - momentum: 0.000000
2023-10-07 01:28:39,368 epoch 8 - iter 65/138 - loss 0.08723165 - time (sec): 47.40 - samples/sec: 224.41 - lr: 0.000043 - momentum: 0.000000
2023-10-07 01:28:48,684 epoch 8 - iter 78/138 - loss 0.08915768 - time (sec): 56.72 - samples/sec: 223.74 - lr: 0.000041 - momentum: 0.000000
2023-10-07 01:28:58,262 epoch 8 - iter 91/138 - loss 0.09084241 - time (sec): 66.30 - samples/sec: 223.35 - lr: 0.000039 - momentum: 0.000000
2023-10-07 01:29:08,052 epoch 8 - iter 104/138 - loss 0.08892701 - time (sec): 76.08 - samples/sec: 224.54 - lr: 0.000038 - momentum: 0.000000
2023-10-07 01:29:18,376 epoch 8 - iter 117/138 - loss 0.08692053 - time (sec): 86.41 - samples/sec: 225.35 - lr: 0.000036 - momentum: 0.000000
2023-10-07 01:29:27,508 epoch 8 - iter 130/138 - loss 0.08573298 - time (sec): 95.54 - samples/sec: 225.11 - lr: 0.000035 - momentum: 0.000000
2023-10-07 01:29:32,893 ----------------------------------------------------------------------------------------------------
2023-10-07 01:29:32,893 EPOCH 8 done: loss 0.0922 - lr: 0.000035
2023-10-07 01:29:39,367 DEV : loss 0.13560204207897186 - f1-score (micro avg)  0.8487
2023-10-07 01:29:39,372 saving best model
2023-10-07 01:29:40,250 ----------------------------------------------------------------------------------------------------
2023-10-07 01:29:49,586 epoch 9 - iter 13/138 - loss 0.07874872 - time (sec): 9.33 - samples/sec: 229.78 - lr: 0.000032 - momentum: 0.000000
2023-10-07 01:29:59,591 epoch 9 - iter 26/138 - loss 0.07917520 - time (sec): 19.34 - samples/sec: 231.28 - lr: 0.000031 - momentum: 0.000000
2023-10-07 01:30:09,142 epoch 9 - iter 39/138 - loss 0.07841021 - time (sec): 28.89 - samples/sec: 232.68 - lr: 0.000029 - momentum: 0.000000
2023-10-07 01:30:19,580 epoch 9 - iter 52/138 - loss 0.07759241 - time (sec): 39.33 - samples/sec: 234.51 - lr: 0.000027 - momentum: 0.000000
2023-10-07 01:30:28,813 epoch 9 - iter 65/138 - loss 0.07677469 - time (sec): 48.56 - samples/sec: 231.89 - lr: 0.000026 - momentum: 0.000000
2023-10-07 01:30:39,300 epoch 9 - iter 78/138 - loss 0.07753629 - time (sec): 59.05 - samples/sec: 230.42 - lr: 0.000024 - momentum: 0.000000
2023-10-07 01:30:48,249 epoch 9 - iter 91/138 - loss 0.07580801 - time (sec): 68.00 - samples/sec: 228.01 - lr: 0.000023 - momentum: 0.000000
2023-10-07 01:30:57,903 epoch 9 - iter 104/138 - loss 0.07869909 - time (sec): 77.65 - samples/sec: 227.93 - lr: 0.000021 - momentum: 0.000000
2023-10-07 01:31:06,851 epoch 9 - iter 117/138 - loss 0.07986836 - time (sec): 86.60 - samples/sec: 226.44 - lr: 0.000020 - momentum: 0.000000
2023-10-07 01:31:15,797 epoch 9 - iter 130/138 - loss 0.07964601 - time (sec): 95.55 - samples/sec: 226.71 - lr: 0.000018 - momentum: 0.000000
2023-10-07 01:31:21,066 ----------------------------------------------------------------------------------------------------
2023-10-07 01:31:21,066 EPOCH 9 done: loss 0.0797 - lr: 0.000018
2023-10-07 01:31:27,542 DEV : loss 0.13089357316493988 - f1-score (micro avg)  0.8609
2023-10-07 01:31:27,547 saving best model
2023-10-07 01:31:28,443 ----------------------------------------------------------------------------------------------------
2023-10-07 01:31:37,497 epoch 10 - iter 13/138 - loss 0.05251554 - time (sec): 9.05 - samples/sec: 224.90 - lr: 0.000016 - momentum: 0.000000
2023-10-07 01:31:46,636 epoch 10 - iter 26/138 - loss 0.05742682 - time (sec): 18.19 - samples/sec: 226.20 - lr: 0.000014 - momentum: 0.000000
2023-10-07 01:31:55,887 epoch 10 - iter 39/138 - loss 0.06060797 - time (sec): 27.44 - samples/sec: 226.48 - lr: 0.000012 - momentum: 0.000000
2023-10-07 01:32:05,632 epoch 10 - iter 52/138 - loss 0.06450398 - time (sec): 37.19 - samples/sec: 226.39 - lr: 0.000011 - momentum: 0.000000
2023-10-07 01:32:15,827 epoch 10 - iter 65/138 - loss 0.06574069 - time (sec): 47.38 - samples/sec: 226.98 - lr: 0.000009 - momentum: 0.000000
2023-10-07 01:32:25,236 epoch 10 - iter 78/138 - loss 0.06923330 - time (sec): 56.79 - samples/sec: 226.30 - lr: 0.000008 - momentum: 0.000000
2023-10-07 01:32:35,271 epoch 10 - iter 91/138 - loss 0.06896849 - time (sec): 66.83 - samples/sec: 227.11 - lr: 0.000006 - momentum: 0.000000
2023-10-07 01:32:44,202 epoch 10 - iter 104/138 - loss 0.06823662 - time (sec): 75.76 - samples/sec: 225.11 - lr: 0.000005 - momentum: 0.000000
2023-10-07 01:32:54,442 epoch 10 - iter 117/138 - loss 0.06764845 - time (sec): 86.00 - samples/sec: 225.88 - lr: 0.000003 - momentum: 0.000000
2023-10-07 01:33:03,573 epoch 10 - iter 130/138 - loss 0.07308496 - time (sec): 95.13 - samples/sec: 225.56 - lr: 0.000001 - momentum: 0.000000
2023-10-07 01:33:09,302 ----------------------------------------------------------------------------------------------------
2023-10-07 01:33:09,302 EPOCH 10 done: loss 0.0725 - lr: 0.000001
2023-10-07 01:33:15,797 DEV : loss 0.1304098665714264 - f1-score (micro avg)  0.8589
2023-10-07 01:33:16,632 ----------------------------------------------------------------------------------------------------
2023-10-07 01:33:16,634 Loading model from best epoch ...
2023-10-07 01:33:19,817 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-07 01:33:26,784 
Results:
- F-score (micro) 0.8903
- F-score (macro) 0.5298
- Accuracy 0.8257

By class:
              precision    recall  f1-score   support

       scope     0.9148    0.9148    0.9148       176
        pers     0.9070    0.9141    0.9105       128
        work     0.7975    0.8514    0.8235        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.8880    0.8927    0.8903       382
   macro avg     0.5238    0.5360    0.5298       382
weighted avg     0.8799    0.8927    0.8861       382

2023-10-07 01:33:26,784 ----------------------------------------------------------------------------------------------------