File size: 24,009 Bytes
de43a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-17 09:38:34,141 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,142 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 09:38:34,142 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Train:  1214 sentences
2023-10-17 09:38:34,143         (train_with_dev=False, train_with_test=False)
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Training Params:
2023-10-17 09:38:34,143  - learning_rate: "5e-05" 
2023-10-17 09:38:34,143  - mini_batch_size: "8"
2023-10-17 09:38:34,143  - max_epochs: "10"
2023-10-17 09:38:34,143  - shuffle: "True"
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Plugins:
2023-10-17 09:38:34,143  - TensorboardLogger
2023-10-17 09:38:34,143  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 09:38:34,143  - metric: "('micro avg', 'f1-score')"
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Computation:
2023-10-17 09:38:34,143  - compute on device: cuda:0
2023-10-17 09:38:34,143  - embedding storage: none
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Model training base path: "hmbench-ajmc/en-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:34,143 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 09:38:34,950 epoch 1 - iter 15/152 - loss 3.27859425 - time (sec): 0.81 - samples/sec: 3732.51 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:38:35,826 epoch 1 - iter 30/152 - loss 2.72599269 - time (sec): 1.68 - samples/sec: 3539.20 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:38:36,686 epoch 1 - iter 45/152 - loss 2.08274849 - time (sec): 2.54 - samples/sec: 3696.16 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:38:37,548 epoch 1 - iter 60/152 - loss 1.69026109 - time (sec): 3.40 - samples/sec: 3728.36 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:38:38,379 epoch 1 - iter 75/152 - loss 1.46877182 - time (sec): 4.24 - samples/sec: 3650.48 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:38:39,218 epoch 1 - iter 90/152 - loss 1.28998562 - time (sec): 5.07 - samples/sec: 3599.89 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:38:40,116 epoch 1 - iter 105/152 - loss 1.15167153 - time (sec): 5.97 - samples/sec: 3585.63 - lr: 0.000034 - momentum: 0.000000
2023-10-17 09:38:40,972 epoch 1 - iter 120/152 - loss 1.05035412 - time (sec): 6.83 - samples/sec: 3580.80 - lr: 0.000039 - momentum: 0.000000
2023-10-17 09:38:41,843 epoch 1 - iter 135/152 - loss 0.96613510 - time (sec): 7.70 - samples/sec: 3566.35 - lr: 0.000044 - momentum: 0.000000
2023-10-17 09:38:42,715 epoch 1 - iter 150/152 - loss 0.89078976 - time (sec): 8.57 - samples/sec: 3576.29 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:38:42,823 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:42,823 EPOCH 1 done: loss 0.8833 - lr: 0.000049
2023-10-17 09:38:43,599 DEV : loss 0.1987733244895935 - f1-score (micro avg)  0.6076
2023-10-17 09:38:43,606 saving best model
2023-10-17 09:38:43,940 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:44,818 epoch 2 - iter 15/152 - loss 0.20082465 - time (sec): 0.88 - samples/sec: 3433.40 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:38:45,655 epoch 2 - iter 30/152 - loss 0.19478102 - time (sec): 1.71 - samples/sec: 3565.02 - lr: 0.000049 - momentum: 0.000000
2023-10-17 09:38:46,493 epoch 2 - iter 45/152 - loss 0.17303971 - time (sec): 2.55 - samples/sec: 3611.14 - lr: 0.000048 - momentum: 0.000000
2023-10-17 09:38:47,364 epoch 2 - iter 60/152 - loss 0.16161793 - time (sec): 3.42 - samples/sec: 3578.45 - lr: 0.000048 - momentum: 0.000000
2023-10-17 09:38:48,245 epoch 2 - iter 75/152 - loss 0.15733415 - time (sec): 4.30 - samples/sec: 3583.42 - lr: 0.000047 - momentum: 0.000000
2023-10-17 09:38:49,039 epoch 2 - iter 90/152 - loss 0.14995035 - time (sec): 5.10 - samples/sec: 3592.35 - lr: 0.000047 - momentum: 0.000000
2023-10-17 09:38:49,872 epoch 2 - iter 105/152 - loss 0.14810154 - time (sec): 5.93 - samples/sec: 3569.23 - lr: 0.000046 - momentum: 0.000000
2023-10-17 09:38:50,735 epoch 2 - iter 120/152 - loss 0.14985129 - time (sec): 6.79 - samples/sec: 3609.32 - lr: 0.000046 - momentum: 0.000000
2023-10-17 09:38:51,593 epoch 2 - iter 135/152 - loss 0.14474154 - time (sec): 7.65 - samples/sec: 3625.84 - lr: 0.000045 - momentum: 0.000000
2023-10-17 09:38:52,480 epoch 2 - iter 150/152 - loss 0.14450170 - time (sec): 8.54 - samples/sec: 3594.70 - lr: 0.000045 - momentum: 0.000000
2023-10-17 09:38:52,583 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:52,583 EPOCH 2 done: loss 0.1435 - lr: 0.000045
2023-10-17 09:38:53,538 DEV : loss 0.13812772929668427 - f1-score (micro avg)  0.8167
2023-10-17 09:38:53,544 saving best model
2023-10-17 09:38:54,193 ----------------------------------------------------------------------------------------------------
2023-10-17 09:38:55,055 epoch 3 - iter 15/152 - loss 0.08406498 - time (sec): 0.86 - samples/sec: 3394.23 - lr: 0.000044 - momentum: 0.000000
2023-10-17 09:38:55,855 epoch 3 - iter 30/152 - loss 0.08216989 - time (sec): 1.66 - samples/sec: 3549.93 - lr: 0.000043 - momentum: 0.000000
2023-10-17 09:38:56,689 epoch 3 - iter 45/152 - loss 0.08400782 - time (sec): 2.49 - samples/sec: 3517.04 - lr: 0.000043 - momentum: 0.000000
2023-10-17 09:38:57,506 epoch 3 - iter 60/152 - loss 0.07951715 - time (sec): 3.31 - samples/sec: 3543.39 - lr: 0.000042 - momentum: 0.000000
2023-10-17 09:38:58,410 epoch 3 - iter 75/152 - loss 0.07134940 - time (sec): 4.21 - samples/sec: 3594.73 - lr: 0.000042 - momentum: 0.000000
2023-10-17 09:38:59,296 epoch 3 - iter 90/152 - loss 0.08497999 - time (sec): 5.10 - samples/sec: 3594.94 - lr: 0.000041 - momentum: 0.000000
2023-10-17 09:39:00,149 epoch 3 - iter 105/152 - loss 0.08940396 - time (sec): 5.95 - samples/sec: 3603.39 - lr: 0.000041 - momentum: 0.000000
2023-10-17 09:39:01,011 epoch 3 - iter 120/152 - loss 0.08746023 - time (sec): 6.81 - samples/sec: 3592.93 - lr: 0.000040 - momentum: 0.000000
2023-10-17 09:39:01,849 epoch 3 - iter 135/152 - loss 0.08383760 - time (sec): 7.65 - samples/sec: 3575.69 - lr: 0.000040 - momentum: 0.000000
2023-10-17 09:39:02,739 epoch 3 - iter 150/152 - loss 0.08213378 - time (sec): 8.54 - samples/sec: 3589.37 - lr: 0.000039 - momentum: 0.000000
2023-10-17 09:39:02,841 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:02,842 EPOCH 3 done: loss 0.0825 - lr: 0.000039
2023-10-17 09:39:03,799 DEV : loss 0.1335965245962143 - f1-score (micro avg)  0.8278
2023-10-17 09:39:03,805 saving best model
2023-10-17 09:39:04,237 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:05,055 epoch 4 - iter 15/152 - loss 0.03908169 - time (sec): 0.81 - samples/sec: 3830.29 - lr: 0.000038 - momentum: 0.000000
2023-10-17 09:39:05,898 epoch 4 - iter 30/152 - loss 0.04629587 - time (sec): 1.65 - samples/sec: 3707.14 - lr: 0.000038 - momentum: 0.000000
2023-10-17 09:39:06,753 epoch 4 - iter 45/152 - loss 0.05984097 - time (sec): 2.51 - samples/sec: 3578.75 - lr: 0.000037 - momentum: 0.000000
2023-10-17 09:39:07,691 epoch 4 - iter 60/152 - loss 0.05594081 - time (sec): 3.45 - samples/sec: 3589.48 - lr: 0.000037 - momentum: 0.000000
2023-10-17 09:39:08,547 epoch 4 - iter 75/152 - loss 0.05336373 - time (sec): 4.30 - samples/sec: 3554.56 - lr: 0.000036 - momentum: 0.000000
2023-10-17 09:39:09,403 epoch 4 - iter 90/152 - loss 0.05316291 - time (sec): 5.16 - samples/sec: 3529.17 - lr: 0.000036 - momentum: 0.000000
2023-10-17 09:39:10,283 epoch 4 - iter 105/152 - loss 0.05437028 - time (sec): 6.04 - samples/sec: 3544.89 - lr: 0.000035 - momentum: 0.000000
2023-10-17 09:39:11,123 epoch 4 - iter 120/152 - loss 0.05389946 - time (sec): 6.88 - samples/sec: 3571.08 - lr: 0.000035 - momentum: 0.000000
2023-10-17 09:39:12,003 epoch 4 - iter 135/152 - loss 0.05636939 - time (sec): 7.76 - samples/sec: 3563.84 - lr: 0.000034 - momentum: 0.000000
2023-10-17 09:39:12,831 epoch 4 - iter 150/152 - loss 0.05731052 - time (sec): 8.59 - samples/sec: 3575.72 - lr: 0.000034 - momentum: 0.000000
2023-10-17 09:39:12,936 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:12,936 EPOCH 4 done: loss 0.0574 - lr: 0.000034
2023-10-17 09:39:13,907 DEV : loss 0.14786171913146973 - f1-score (micro avg)  0.83
2023-10-17 09:39:13,915 saving best model
2023-10-17 09:39:14,340 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:15,265 epoch 5 - iter 15/152 - loss 0.05904708 - time (sec): 0.92 - samples/sec: 3658.66 - lr: 0.000033 - momentum: 0.000000
2023-10-17 09:39:16,172 epoch 5 - iter 30/152 - loss 0.04451243 - time (sec): 1.83 - samples/sec: 3466.96 - lr: 0.000032 - momentum: 0.000000
2023-10-17 09:39:17,059 epoch 5 - iter 45/152 - loss 0.04383666 - time (sec): 2.72 - samples/sec: 3563.23 - lr: 0.000032 - momentum: 0.000000
2023-10-17 09:39:17,903 epoch 5 - iter 60/152 - loss 0.03689764 - time (sec): 3.56 - samples/sec: 3569.59 - lr: 0.000031 - momentum: 0.000000
2023-10-17 09:39:18,733 epoch 5 - iter 75/152 - loss 0.03291934 - time (sec): 4.39 - samples/sec: 3594.00 - lr: 0.000031 - momentum: 0.000000
2023-10-17 09:39:19,588 epoch 5 - iter 90/152 - loss 0.03570598 - time (sec): 5.25 - samples/sec: 3561.01 - lr: 0.000030 - momentum: 0.000000
2023-10-17 09:39:20,460 epoch 5 - iter 105/152 - loss 0.03541183 - time (sec): 6.12 - samples/sec: 3544.28 - lr: 0.000030 - momentum: 0.000000
2023-10-17 09:39:21,266 epoch 5 - iter 120/152 - loss 0.04052611 - time (sec): 6.92 - samples/sec: 3528.99 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:39:22,140 epoch 5 - iter 135/152 - loss 0.03986727 - time (sec): 7.80 - samples/sec: 3536.23 - lr: 0.000029 - momentum: 0.000000
2023-10-17 09:39:22,995 epoch 5 - iter 150/152 - loss 0.04344923 - time (sec): 8.65 - samples/sec: 3548.42 - lr: 0.000028 - momentum: 0.000000
2023-10-17 09:39:23,099 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:23,099 EPOCH 5 done: loss 0.0432 - lr: 0.000028
2023-10-17 09:39:24,037 DEV : loss 0.18125084042549133 - f1-score (micro avg)  0.8386
2023-10-17 09:39:24,044 saving best model
2023-10-17 09:39:24,518 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:25,402 epoch 6 - iter 15/152 - loss 0.03603697 - time (sec): 0.88 - samples/sec: 3513.16 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:39:26,246 epoch 6 - iter 30/152 - loss 0.02829961 - time (sec): 1.73 - samples/sec: 3425.55 - lr: 0.000027 - momentum: 0.000000
2023-10-17 09:39:27,132 epoch 6 - iter 45/152 - loss 0.02713591 - time (sec): 2.61 - samples/sec: 3404.97 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:39:28,057 epoch 6 - iter 60/152 - loss 0.02652119 - time (sec): 3.54 - samples/sec: 3373.27 - lr: 0.000026 - momentum: 0.000000
2023-10-17 09:39:28,955 epoch 6 - iter 75/152 - loss 0.02681934 - time (sec): 4.44 - samples/sec: 3411.40 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:39:29,812 epoch 6 - iter 90/152 - loss 0.02547718 - time (sec): 5.29 - samples/sec: 3423.75 - lr: 0.000025 - momentum: 0.000000
2023-10-17 09:39:30,715 epoch 6 - iter 105/152 - loss 0.02868459 - time (sec): 6.20 - samples/sec: 3439.26 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:39:31,560 epoch 6 - iter 120/152 - loss 0.02636207 - time (sec): 7.04 - samples/sec: 3447.80 - lr: 0.000024 - momentum: 0.000000
2023-10-17 09:39:32,381 epoch 6 - iter 135/152 - loss 0.02747651 - time (sec): 7.86 - samples/sec: 3483.43 - lr: 0.000023 - momentum: 0.000000
2023-10-17 09:39:33,286 epoch 6 - iter 150/152 - loss 0.02916397 - time (sec): 8.77 - samples/sec: 3497.20 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:39:33,389 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:33,389 EPOCH 6 done: loss 0.0290 - lr: 0.000022
2023-10-17 09:39:34,346 DEV : loss 0.17775358259677887 - f1-score (micro avg)  0.8392
2023-10-17 09:39:34,354 saving best model
2023-10-17 09:39:34,847 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:35,727 epoch 7 - iter 15/152 - loss 0.01054120 - time (sec): 0.88 - samples/sec: 3191.99 - lr: 0.000022 - momentum: 0.000000
2023-10-17 09:39:36,613 epoch 7 - iter 30/152 - loss 0.00586221 - time (sec): 1.76 - samples/sec: 3306.50 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:39:37,476 epoch 7 - iter 45/152 - loss 0.01323046 - time (sec): 2.63 - samples/sec: 3394.61 - lr: 0.000021 - momentum: 0.000000
2023-10-17 09:39:38,352 epoch 7 - iter 60/152 - loss 0.01434518 - time (sec): 3.50 - samples/sec: 3381.57 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:39:39,198 epoch 7 - iter 75/152 - loss 0.01412553 - time (sec): 4.35 - samples/sec: 3445.80 - lr: 0.000020 - momentum: 0.000000
2023-10-17 09:39:40,033 epoch 7 - iter 90/152 - loss 0.01286259 - time (sec): 5.18 - samples/sec: 3473.05 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:39:40,921 epoch 7 - iter 105/152 - loss 0.01426731 - time (sec): 6.07 - samples/sec: 3466.78 - lr: 0.000019 - momentum: 0.000000
2023-10-17 09:39:41,876 epoch 7 - iter 120/152 - loss 0.01566369 - time (sec): 7.03 - samples/sec: 3476.59 - lr: 0.000018 - momentum: 0.000000
2023-10-17 09:39:42,805 epoch 7 - iter 135/152 - loss 0.01808615 - time (sec): 7.96 - samples/sec: 3486.38 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:39:43,656 epoch 7 - iter 150/152 - loss 0.02135121 - time (sec): 8.81 - samples/sec: 3478.81 - lr: 0.000017 - momentum: 0.000000
2023-10-17 09:39:43,764 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:43,764 EPOCH 7 done: loss 0.0214 - lr: 0.000017
2023-10-17 09:39:44,763 DEV : loss 0.18729975819587708 - f1-score (micro avg)  0.8547
2023-10-17 09:39:44,771 saving best model
2023-10-17 09:39:45,212 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:46,080 epoch 8 - iter 15/152 - loss 0.00906167 - time (sec): 0.87 - samples/sec: 3887.75 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:39:46,926 epoch 8 - iter 30/152 - loss 0.00839837 - time (sec): 1.71 - samples/sec: 3729.41 - lr: 0.000016 - momentum: 0.000000
2023-10-17 09:39:47,820 epoch 8 - iter 45/152 - loss 0.01422912 - time (sec): 2.60 - samples/sec: 3645.42 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:39:48,644 epoch 8 - iter 60/152 - loss 0.01285881 - time (sec): 3.43 - samples/sec: 3550.60 - lr: 0.000015 - momentum: 0.000000
2023-10-17 09:39:49,523 epoch 8 - iter 75/152 - loss 0.01186707 - time (sec): 4.31 - samples/sec: 3603.65 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:39:50,290 epoch 8 - iter 90/152 - loss 0.01303695 - time (sec): 5.08 - samples/sec: 3630.21 - lr: 0.000014 - momentum: 0.000000
2023-10-17 09:39:51,145 epoch 8 - iter 105/152 - loss 0.01545938 - time (sec): 5.93 - samples/sec: 3607.92 - lr: 0.000013 - momentum: 0.000000
2023-10-17 09:39:51,988 epoch 8 - iter 120/152 - loss 0.01686442 - time (sec): 6.77 - samples/sec: 3619.78 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:39:52,840 epoch 8 - iter 135/152 - loss 0.01607652 - time (sec): 7.63 - samples/sec: 3621.61 - lr: 0.000012 - momentum: 0.000000
2023-10-17 09:39:53,684 epoch 8 - iter 150/152 - loss 0.01592888 - time (sec): 8.47 - samples/sec: 3615.38 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:39:53,792 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:53,792 EPOCH 8 done: loss 0.0157 - lr: 0.000011
2023-10-17 09:39:54,730 DEV : loss 0.19675733149051666 - f1-score (micro avg)  0.8516
2023-10-17 09:39:54,737 ----------------------------------------------------------------------------------------------------
2023-10-17 09:39:55,580 epoch 9 - iter 15/152 - loss 0.01308460 - time (sec): 0.84 - samples/sec: 3652.30 - lr: 0.000011 - momentum: 0.000000
2023-10-17 09:39:56,439 epoch 9 - iter 30/152 - loss 0.00896246 - time (sec): 1.70 - samples/sec: 3516.26 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:39:57,331 epoch 9 - iter 45/152 - loss 0.01312645 - time (sec): 2.59 - samples/sec: 3534.32 - lr: 0.000010 - momentum: 0.000000
2023-10-17 09:39:58,174 epoch 9 - iter 60/152 - loss 0.01130915 - time (sec): 3.44 - samples/sec: 3505.52 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:39:59,043 epoch 9 - iter 75/152 - loss 0.01077197 - time (sec): 4.30 - samples/sec: 3539.88 - lr: 0.000009 - momentum: 0.000000
2023-10-17 09:39:59,895 epoch 9 - iter 90/152 - loss 0.01047289 - time (sec): 5.16 - samples/sec: 3559.78 - lr: 0.000008 - momentum: 0.000000
2023-10-17 09:40:00,767 epoch 9 - iter 105/152 - loss 0.00916831 - time (sec): 6.03 - samples/sec: 3536.58 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:40:01,576 epoch 9 - iter 120/152 - loss 0.01012104 - time (sec): 6.84 - samples/sec: 3548.84 - lr: 0.000007 - momentum: 0.000000
2023-10-17 09:40:02,455 epoch 9 - iter 135/152 - loss 0.01105105 - time (sec): 7.72 - samples/sec: 3555.43 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:40:03,345 epoch 9 - iter 150/152 - loss 0.01143143 - time (sec): 8.61 - samples/sec: 3561.34 - lr: 0.000006 - momentum: 0.000000
2023-10-17 09:40:03,449 ----------------------------------------------------------------------------------------------------
2023-10-17 09:40:03,449 EPOCH 9 done: loss 0.0113 - lr: 0.000006
2023-10-17 09:40:04,397 DEV : loss 0.200613334774971 - f1-score (micro avg)  0.8503
2023-10-17 09:40:04,405 ----------------------------------------------------------------------------------------------------
2023-10-17 09:40:05,304 epoch 10 - iter 15/152 - loss 0.00389795 - time (sec): 0.90 - samples/sec: 3276.13 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:40:06,241 epoch 10 - iter 30/152 - loss 0.00586938 - time (sec): 1.83 - samples/sec: 3256.88 - lr: 0.000005 - momentum: 0.000000
2023-10-17 09:40:07,204 epoch 10 - iter 45/152 - loss 0.00698098 - time (sec): 2.80 - samples/sec: 3313.32 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:40:08,154 epoch 10 - iter 60/152 - loss 0.01104798 - time (sec): 3.75 - samples/sec: 3254.03 - lr: 0.000004 - momentum: 0.000000
2023-10-17 09:40:09,020 epoch 10 - iter 75/152 - loss 0.00971413 - time (sec): 4.61 - samples/sec: 3281.76 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:40:09,935 epoch 10 - iter 90/152 - loss 0.00975448 - time (sec): 5.53 - samples/sec: 3280.82 - lr: 0.000003 - momentum: 0.000000
2023-10-17 09:40:10,824 epoch 10 - iter 105/152 - loss 0.00833967 - time (sec): 6.42 - samples/sec: 3327.69 - lr: 0.000002 - momentum: 0.000000
2023-10-17 09:40:11,689 epoch 10 - iter 120/152 - loss 0.00759956 - time (sec): 7.28 - samples/sec: 3341.10 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:40:12,574 epoch 10 - iter 135/152 - loss 0.00829980 - time (sec): 8.17 - samples/sec: 3354.76 - lr: 0.000001 - momentum: 0.000000
2023-10-17 09:40:13,508 epoch 10 - iter 150/152 - loss 0.00935136 - time (sec): 9.10 - samples/sec: 3363.67 - lr: 0.000000 - momentum: 0.000000
2023-10-17 09:40:13,628 ----------------------------------------------------------------------------------------------------
2023-10-17 09:40:13,628 EPOCH 10 done: loss 0.0092 - lr: 0.000000
2023-10-17 09:40:14,600 DEV : loss 0.19964995980262756 - f1-score (micro avg)  0.8544
2023-10-17 09:40:14,972 ----------------------------------------------------------------------------------------------------
2023-10-17 09:40:14,974 Loading model from best epoch ...
2023-10-17 09:40:16,456 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-17 09:40:17,392 
Results:
- F-score (micro) 0.8113
- F-score (macro) 0.6298
- Accuracy 0.6923

By class:
              precision    recall  f1-score   support

       scope     0.7677    0.7881    0.7778       151
        work     0.7843    0.8421    0.8122        95
        pers     0.8788    0.9062    0.8923        96
         loc     0.6667    0.6667    0.6667         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7956    0.8276    0.8113       348
   macro avg     0.6195    0.6406    0.6298       348
weighted avg     0.7954    0.8276    0.8111       348

2023-10-17 09:40:17,392 ----------------------------------------------------------------------------------------------------