2023-10-15 04:09:08,570 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,571 Model: "SequenceTagger( (embeddings): ByT5Embeddings( (model): T5EncoderModel( (shared): Embedding(384, 1472) (encoder): T5Stack( (embed_tokens): Embedding(384, 1472) (block): ModuleList( (0): T5Block( (layer): ModuleList( (0): T5LayerSelfAttention( (SelfAttention): T5Attention( (q): Linear(in_features=1472, out_features=384, bias=False) (k): Linear(in_features=1472, out_features=384, bias=False) (v): Linear(in_features=1472, out_features=384, bias=False) (o): Linear(in_features=384, out_features=1472, bias=False) (relative_attention_bias): Embedding(32, 6) ) (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (1): T5LayerFF( (DenseReluDense): T5DenseGatedActDense( (wi_0): Linear(in_features=1472, out_features=3584, bias=False) (wi_1): Linear(in_features=1472, out_features=3584, bias=False) (wo): Linear(in_features=3584, out_features=1472, bias=False) (dropout): Dropout(p=0.1, inplace=False) (act): NewGELUActivation() ) (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) (1-11): 11 x T5Block( (layer): ModuleList( (0): T5LayerSelfAttention( (SelfAttention): T5Attention( (q): Linear(in_features=1472, out_features=384, bias=False) (k): Linear(in_features=1472, out_features=384, bias=False) (v): Linear(in_features=1472, out_features=384, bias=False) (o): Linear(in_features=384, out_features=1472, bias=False) ) (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (1): T5LayerFF( (DenseReluDense): T5DenseGatedActDense( (wi_0): Linear(in_features=1472, out_features=3584, bias=False) (wi_1): Linear(in_features=1472, out_features=3584, bias=False) (wo): Linear(in_features=3584, out_features=1472, bias=False) (dropout): Dropout(p=0.1, inplace=False) (act): NewGELUActivation() ) (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=1472, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-15 04:09:08,571 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Train: 3575 sentences 2023-10-15 04:09:08,572 (train_with_dev=False, train_with_test=False) 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Training Params: 2023-10-15 04:09:08,572 - learning_rate: "0.00015" 2023-10-15 04:09:08,572 - mini_batch_size: "4" 2023-10-15 04:09:08,572 - max_epochs: "10" 2023-10-15 04:09:08,572 - shuffle: "True" 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Plugins: 2023-10-15 04:09:08,572 - TensorboardLogger 2023-10-15 04:09:08,572 - LinearScheduler | warmup_fraction: '0.1' 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Final evaluation on model from best epoch (best-model.pt) 2023-10-15 04:09:08,572 - metric: "('micro avg', 'f1-score')" 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Computation: 2023-10-15 04:09:08,572 - compute on device: cuda:0 2023-10-15 04:09:08,572 - embedding storage: none 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 Model training base path: "hmbench-hipe2020/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5" 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,572 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:09:08,573 Logging anything other than scalars to TensorBoard is currently not supported. 2023-10-15 04:09:25,277 epoch 1 - iter 89/894 - loss 3.01669693 - time (sec): 16.70 - samples/sec: 522.34 - lr: 0.000015 - momentum: 0.000000 2023-10-15 04:09:41,508 epoch 1 - iter 178/894 - loss 2.96493085 - time (sec): 32.93 - samples/sec: 509.70 - lr: 0.000030 - momentum: 0.000000 2023-10-15 04:09:58,222 epoch 1 - iter 267/894 - loss 2.79712665 - time (sec): 49.65 - samples/sec: 509.72 - lr: 0.000045 - momentum: 0.000000 2023-10-15 04:10:15,109 epoch 1 - iter 356/894 - loss 2.58130911 - time (sec): 66.54 - samples/sec: 518.52 - lr: 0.000060 - momentum: 0.000000 2023-10-15 04:10:32,072 epoch 1 - iter 445/894 - loss 2.34533400 - time (sec): 83.50 - samples/sec: 524.01 - lr: 0.000074 - momentum: 0.000000 2023-10-15 04:10:49,283 epoch 1 - iter 534/894 - loss 2.11215980 - time (sec): 100.71 - samples/sec: 522.58 - lr: 0.000089 - momentum: 0.000000 2023-10-15 04:11:05,165 epoch 1 - iter 623/894 - loss 1.92635674 - time (sec): 116.59 - samples/sec: 515.69 - lr: 0.000104 - momentum: 0.000000 2023-10-15 04:11:23,626 epoch 1 - iter 712/894 - loss 1.73388268 - time (sec): 135.05 - samples/sec: 513.95 - lr: 0.000119 - momentum: 0.000000 2023-10-15 04:11:39,671 epoch 1 - iter 801/894 - loss 1.61191467 - time (sec): 151.10 - samples/sec: 511.70 - lr: 0.000134 - momentum: 0.000000 2023-10-15 04:11:56,352 epoch 1 - iter 890/894 - loss 1.48758363 - time (sec): 167.78 - samples/sec: 513.37 - lr: 0.000149 - momentum: 0.000000 2023-10-15 04:11:57,084 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:11:57,084 EPOCH 1 done: loss 1.4828 - lr: 0.000149 2023-10-15 04:12:20,886 DEV : loss 0.3928602635860443 - f1-score (micro avg) 0.0 2023-10-15 04:12:20,914 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:12:37,848 epoch 2 - iter 89/894 - loss 0.40241694 - time (sec): 16.93 - samples/sec: 532.50 - lr: 0.000148 - momentum: 0.000000 2023-10-15 04:12:54,611 epoch 2 - iter 178/894 - loss 0.36809400 - time (sec): 33.70 - samples/sec: 517.95 - lr: 0.000147 - momentum: 0.000000 2023-10-15 04:13:10,826 epoch 2 - iter 267/894 - loss 0.37648462 - time (sec): 49.91 - samples/sec: 505.92 - lr: 0.000145 - momentum: 0.000000 2023-10-15 04:13:27,441 epoch 2 - iter 356/894 - loss 0.36497012 - time (sec): 66.53 - samples/sec: 511.54 - lr: 0.000143 - momentum: 0.000000 2023-10-15 04:13:43,772 epoch 2 - iter 445/894 - loss 0.34104738 - time (sec): 82.86 - samples/sec: 511.37 - lr: 0.000142 - momentum: 0.000000 2023-10-15 04:14:00,746 epoch 2 - iter 534/894 - loss 0.32763633 - time (sec): 99.83 - samples/sec: 511.90 - lr: 0.000140 - momentum: 0.000000 2023-10-15 04:14:19,135 epoch 2 - iter 623/894 - loss 0.32056524 - time (sec): 118.22 - samples/sec: 511.61 - lr: 0.000138 - momentum: 0.000000 2023-10-15 04:14:35,357 epoch 2 - iter 712/894 - loss 0.30819682 - time (sec): 134.44 - samples/sec: 509.93 - lr: 0.000137 - momentum: 0.000000 2023-10-15 04:14:51,947 epoch 2 - iter 801/894 - loss 0.29742880 - time (sec): 151.03 - samples/sec: 510.18 - lr: 0.000135 - momentum: 0.000000 2023-10-15 04:15:08,857 epoch 2 - iter 890/894 - loss 0.28678667 - time (sec): 167.94 - samples/sec: 512.85 - lr: 0.000133 - momentum: 0.000000 2023-10-15 04:15:09,584 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:15:09,585 EPOCH 2 done: loss 0.2860 - lr: 0.000133 2023-10-15 04:15:35,564 DEV : loss 0.19997233152389526 - f1-score (micro avg) 0.6136 2023-10-15 04:15:35,590 saving best model 2023-10-15 04:15:36,195 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:15:53,031 epoch 3 - iter 89/894 - loss 0.16944357 - time (sec): 16.83 - samples/sec: 518.92 - lr: 0.000132 - momentum: 0.000000 2023-10-15 04:16:09,384 epoch 3 - iter 178/894 - loss 0.15854015 - time (sec): 33.19 - samples/sec: 504.82 - lr: 0.000130 - momentum: 0.000000 2023-10-15 04:16:28,515 epoch 3 - iter 267/894 - loss 0.16442094 - time (sec): 52.32 - samples/sec: 522.63 - lr: 0.000128 - momentum: 0.000000 2023-10-15 04:16:45,676 epoch 3 - iter 356/894 - loss 0.15557875 - time (sec): 69.48 - samples/sec: 526.84 - lr: 0.000127 - momentum: 0.000000 2023-10-15 04:17:02,066 epoch 3 - iter 445/894 - loss 0.15267942 - time (sec): 85.87 - samples/sec: 522.35 - lr: 0.000125 - momentum: 0.000000 2023-10-15 04:17:17,826 epoch 3 - iter 534/894 - loss 0.14961009 - time (sec): 101.63 - samples/sec: 514.91 - lr: 0.000123 - momentum: 0.000000 2023-10-15 04:17:33,775 epoch 3 - iter 623/894 - loss 0.15096735 - time (sec): 117.58 - samples/sec: 511.73 - lr: 0.000122 - momentum: 0.000000 2023-10-15 04:17:50,817 epoch 3 - iter 712/894 - loss 0.14472220 - time (sec): 134.62 - samples/sec: 517.05 - lr: 0.000120 - momentum: 0.000000 2023-10-15 04:18:07,136 epoch 3 - iter 801/894 - loss 0.14338584 - time (sec): 150.94 - samples/sec: 514.75 - lr: 0.000118 - momentum: 0.000000 2023-10-15 04:18:23,674 epoch 3 - iter 890/894 - loss 0.13872605 - time (sec): 167.48 - samples/sec: 514.60 - lr: 0.000117 - momentum: 0.000000 2023-10-15 04:18:24,379 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:18:24,379 EPOCH 3 done: loss 0.1388 - lr: 0.000117 2023-10-15 04:18:50,277 DEV : loss 0.1811581701040268 - f1-score (micro avg) 0.7212 2023-10-15 04:18:50,303 saving best model 2023-10-15 04:18:53,369 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:19:10,048 epoch 4 - iter 89/894 - loss 0.07264337 - time (sec): 16.68 - samples/sec: 496.21 - lr: 0.000115 - momentum: 0.000000 2023-10-15 04:19:26,851 epoch 4 - iter 178/894 - loss 0.08074117 - time (sec): 33.48 - samples/sec: 513.75 - lr: 0.000113 - momentum: 0.000000 2023-10-15 04:19:45,305 epoch 4 - iter 267/894 - loss 0.08175014 - time (sec): 51.93 - samples/sec: 516.80 - lr: 0.000112 - momentum: 0.000000 2023-10-15 04:20:02,733 epoch 4 - iter 356/894 - loss 0.07864725 - time (sec): 69.36 - samples/sec: 522.87 - lr: 0.000110 - momentum: 0.000000 2023-10-15 04:20:19,324 epoch 4 - iter 445/894 - loss 0.08009647 - time (sec): 85.95 - samples/sec: 519.46 - lr: 0.000108 - momentum: 0.000000 2023-10-15 04:20:36,313 epoch 4 - iter 534/894 - loss 0.07890887 - time (sec): 102.94 - samples/sec: 519.76 - lr: 0.000107 - momentum: 0.000000 2023-10-15 04:20:52,676 epoch 4 - iter 623/894 - loss 0.07867496 - time (sec): 119.30 - samples/sec: 517.47 - lr: 0.000105 - momentum: 0.000000 2023-10-15 04:21:09,372 epoch 4 - iter 712/894 - loss 0.07953826 - time (sec): 136.00 - samples/sec: 513.81 - lr: 0.000103 - momentum: 0.000000 2023-10-15 04:21:25,511 epoch 4 - iter 801/894 - loss 0.08107232 - time (sec): 152.14 - samples/sec: 510.97 - lr: 0.000102 - momentum: 0.000000 2023-10-15 04:21:42,113 epoch 4 - iter 890/894 - loss 0.08004768 - time (sec): 168.74 - samples/sec: 511.37 - lr: 0.000100 - momentum: 0.000000 2023-10-15 04:21:42,769 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:21:42,769 EPOCH 4 done: loss 0.0798 - lr: 0.000100 2023-10-15 04:22:08,721 DEV : loss 0.1746881902217865 - f1-score (micro avg) 0.7458 2023-10-15 04:22:08,747 saving best model 2023-10-15 04:22:12,600 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:22:29,474 epoch 5 - iter 89/894 - loss 0.05705340 - time (sec): 16.87 - samples/sec: 527.26 - lr: 0.000098 - momentum: 0.000000 2023-10-15 04:22:46,746 epoch 5 - iter 178/894 - loss 0.05878435 - time (sec): 34.14 - samples/sec: 532.89 - lr: 0.000097 - momentum: 0.000000 2023-10-15 04:23:03,102 epoch 5 - iter 267/894 - loss 0.05451082 - time (sec): 50.50 - samples/sec: 526.04 - lr: 0.000095 - momentum: 0.000000 2023-10-15 04:23:19,958 epoch 5 - iter 356/894 - loss 0.05267294 - time (sec): 67.36 - samples/sec: 526.25 - lr: 0.000093 - momentum: 0.000000 2023-10-15 04:23:38,442 epoch 5 - iter 445/894 - loss 0.05334504 - time (sec): 85.84 - samples/sec: 524.68 - lr: 0.000092 - momentum: 0.000000 2023-10-15 04:23:55,070 epoch 5 - iter 534/894 - loss 0.05556145 - time (sec): 102.47 - samples/sec: 523.18 - lr: 0.000090 - momentum: 0.000000 2023-10-15 04:24:11,507 epoch 5 - iter 623/894 - loss 0.05529169 - time (sec): 118.90 - samples/sec: 520.68 - lr: 0.000088 - momentum: 0.000000 2023-10-15 04:24:27,838 epoch 5 - iter 712/894 - loss 0.05506619 - time (sec): 135.24 - samples/sec: 516.46 - lr: 0.000087 - momentum: 0.000000 2023-10-15 04:24:44,106 epoch 5 - iter 801/894 - loss 0.05292623 - time (sec): 151.50 - samples/sec: 513.68 - lr: 0.000085 - momentum: 0.000000 2023-10-15 04:25:00,787 epoch 5 - iter 890/894 - loss 0.05178979 - time (sec): 168.19 - samples/sec: 512.87 - lr: 0.000083 - momentum: 0.000000 2023-10-15 04:25:01,462 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:25:01,462 EPOCH 5 done: loss 0.0516 - lr: 0.000083 2023-10-15 04:25:27,317 DEV : loss 0.1961323320865631 - f1-score (micro avg) 0.7533 2023-10-15 04:25:27,343 saving best model 2023-10-15 04:25:30,115 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:25:46,977 epoch 6 - iter 89/894 - loss 0.02773905 - time (sec): 16.86 - samples/sec: 508.69 - lr: 0.000082 - momentum: 0.000000 2023-10-15 04:26:05,774 epoch 6 - iter 178/894 - loss 0.03176464 - time (sec): 35.66 - samples/sec: 503.28 - lr: 0.000080 - momentum: 0.000000 2023-10-15 04:26:22,897 epoch 6 - iter 267/894 - loss 0.03165230 - time (sec): 52.78 - samples/sec: 507.70 - lr: 0.000078 - momentum: 0.000000 2023-10-15 04:26:40,037 epoch 6 - iter 356/894 - loss 0.02837219 - time (sec): 69.92 - samples/sec: 512.12 - lr: 0.000077 - momentum: 0.000000 2023-10-15 04:26:56,297 epoch 6 - iter 445/894 - loss 0.02927562 - time (sec): 86.18 - samples/sec: 509.14 - lr: 0.000075 - momentum: 0.000000 2023-10-15 04:27:13,036 epoch 6 - iter 534/894 - loss 0.02852822 - time (sec): 102.92 - samples/sec: 511.49 - lr: 0.000073 - momentum: 0.000000 2023-10-15 04:27:30,324 epoch 6 - iter 623/894 - loss 0.03104351 - time (sec): 120.21 - samples/sec: 512.56 - lr: 0.000072 - momentum: 0.000000 2023-10-15 04:27:46,861 epoch 6 - iter 712/894 - loss 0.03080534 - time (sec): 136.75 - samples/sec: 510.43 - lr: 0.000070 - momentum: 0.000000 2023-10-15 04:28:03,322 epoch 6 - iter 801/894 - loss 0.03026852 - time (sec): 153.21 - samples/sec: 507.43 - lr: 0.000068 - momentum: 0.000000 2023-10-15 04:28:20,062 epoch 6 - iter 890/894 - loss 0.02999441 - time (sec): 169.95 - samples/sec: 507.21 - lr: 0.000067 - momentum: 0.000000 2023-10-15 04:28:20,777 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:28:20,777 EPOCH 6 done: loss 0.0301 - lr: 0.000067 2023-10-15 04:28:46,864 DEV : loss 0.21011091768741608 - f1-score (micro avg) 0.7392 2023-10-15 04:28:46,891 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:29:03,183 epoch 7 - iter 89/894 - loss 0.01509648 - time (sec): 16.29 - samples/sec: 497.89 - lr: 0.000065 - momentum: 0.000000 2023-10-15 04:29:20,466 epoch 7 - iter 178/894 - loss 0.01768168 - time (sec): 33.57 - samples/sec: 521.88 - lr: 0.000063 - momentum: 0.000000 2023-10-15 04:29:36,944 epoch 7 - iter 267/894 - loss 0.01723374 - time (sec): 50.05 - samples/sec: 515.64 - lr: 0.000062 - momentum: 0.000000 2023-10-15 04:29:53,834 epoch 7 - iter 356/894 - loss 0.01926101 - time (sec): 66.94 - samples/sec: 519.06 - lr: 0.000060 - momentum: 0.000000 2023-10-15 04:30:12,591 epoch 7 - iter 445/894 - loss 0.02063806 - time (sec): 85.70 - samples/sec: 519.28 - lr: 0.000058 - momentum: 0.000000 2023-10-15 04:30:29,223 epoch 7 - iter 534/894 - loss 0.02231732 - time (sec): 102.33 - samples/sec: 516.46 - lr: 0.000057 - momentum: 0.000000 2023-10-15 04:30:45,697 epoch 7 - iter 623/894 - loss 0.02186638 - time (sec): 118.80 - samples/sec: 515.38 - lr: 0.000055 - momentum: 0.000000 2023-10-15 04:31:02,125 epoch 7 - iter 712/894 - loss 0.02151176 - time (sec): 135.23 - samples/sec: 513.26 - lr: 0.000053 - momentum: 0.000000 2023-10-15 04:31:18,350 epoch 7 - iter 801/894 - loss 0.02251965 - time (sec): 151.46 - samples/sec: 510.54 - lr: 0.000052 - momentum: 0.000000 2023-10-15 04:31:35,670 epoch 7 - iter 890/894 - loss 0.02216851 - time (sec): 168.78 - samples/sec: 511.33 - lr: 0.000050 - momentum: 0.000000 2023-10-15 04:31:36,315 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:31:36,315 EPOCH 7 done: loss 0.0221 - lr: 0.000050 2023-10-15 04:32:02,469 DEV : loss 0.21213364601135254 - f1-score (micro avg) 0.7496 2023-10-15 04:32:02,496 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:32:19,708 epoch 8 - iter 89/894 - loss 0.01169276 - time (sec): 17.21 - samples/sec: 491.26 - lr: 0.000048 - momentum: 0.000000 2023-10-15 04:32:38,228 epoch 8 - iter 178/894 - loss 0.02044703 - time (sec): 35.73 - samples/sec: 515.58 - lr: 0.000047 - momentum: 0.000000 2023-10-15 04:32:54,827 epoch 8 - iter 267/894 - loss 0.01832686 - time (sec): 52.33 - samples/sec: 519.69 - lr: 0.000045 - momentum: 0.000000 2023-10-15 04:33:11,310 epoch 8 - iter 356/894 - loss 0.01846364 - time (sec): 68.81 - samples/sec: 517.95 - lr: 0.000043 - momentum: 0.000000 2023-10-15 04:33:27,641 epoch 8 - iter 445/894 - loss 0.01842268 - time (sec): 85.14 - samples/sec: 516.53 - lr: 0.000042 - momentum: 0.000000 2023-10-15 04:33:44,139 epoch 8 - iter 534/894 - loss 0.01721769 - time (sec): 101.64 - samples/sec: 513.08 - lr: 0.000040 - momentum: 0.000000 2023-10-15 04:34:01,049 epoch 8 - iter 623/894 - loss 0.01554985 - time (sec): 118.55 - samples/sec: 514.36 - lr: 0.000038 - momentum: 0.000000 2023-10-15 04:34:17,851 epoch 8 - iter 712/894 - loss 0.01536733 - time (sec): 135.35 - samples/sec: 516.76 - lr: 0.000037 - momentum: 0.000000 2023-10-15 04:34:34,020 epoch 8 - iter 801/894 - loss 0.01479547 - time (sec): 151.52 - samples/sec: 512.89 - lr: 0.000035 - momentum: 0.000000 2023-10-15 04:34:50,629 epoch 8 - iter 890/894 - loss 0.01443364 - time (sec): 168.13 - samples/sec: 513.01 - lr: 0.000033 - momentum: 0.000000 2023-10-15 04:34:51,277 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:34:51,277 EPOCH 8 done: loss 0.0144 - lr: 0.000033 2023-10-15 04:35:17,695 DEV : loss 0.23843105137348175 - f1-score (micro avg) 0.7599 2023-10-15 04:35:17,725 saving best model 2023-10-15 04:35:20,871 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:35:37,980 epoch 9 - iter 89/894 - loss 0.01583546 - time (sec): 17.11 - samples/sec: 526.25 - lr: 0.000032 - momentum: 0.000000 2023-10-15 04:35:54,638 epoch 9 - iter 178/894 - loss 0.01093487 - time (sec): 33.77 - samples/sec: 526.20 - lr: 0.000030 - momentum: 0.000000 2023-10-15 04:36:11,458 epoch 9 - iter 267/894 - loss 0.00930857 - time (sec): 50.59 - samples/sec: 519.11 - lr: 0.000028 - momentum: 0.000000 2023-10-15 04:36:27,958 epoch 9 - iter 356/894 - loss 0.00861726 - time (sec): 67.09 - samples/sec: 515.16 - lr: 0.000027 - momentum: 0.000000 2023-10-15 04:36:44,252 epoch 9 - iter 445/894 - loss 0.00776441 - time (sec): 83.38 - samples/sec: 511.51 - lr: 0.000025 - momentum: 0.000000 2023-10-15 04:37:01,051 epoch 9 - iter 534/894 - loss 0.00737818 - time (sec): 100.18 - samples/sec: 511.52 - lr: 0.000023 - momentum: 0.000000 2023-10-15 04:37:18,832 epoch 9 - iter 623/894 - loss 0.00817716 - time (sec): 117.96 - samples/sec: 514.90 - lr: 0.000022 - momentum: 0.000000 2023-10-15 04:37:35,299 epoch 9 - iter 712/894 - loss 0.00840400 - time (sec): 134.43 - samples/sec: 511.00 - lr: 0.000020 - momentum: 0.000000 2023-10-15 04:37:53,566 epoch 9 - iter 801/894 - loss 0.01000822 - time (sec): 152.69 - samples/sec: 509.87 - lr: 0.000019 - momentum: 0.000000 2023-10-15 04:38:10,401 epoch 9 - iter 890/894 - loss 0.01001162 - time (sec): 169.53 - samples/sec: 508.91 - lr: 0.000017 - momentum: 0.000000 2023-10-15 04:38:11,057 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:38:11,057 EPOCH 9 done: loss 0.0100 - lr: 0.000017 2023-10-15 04:38:36,962 DEV : loss 0.24341297149658203 - f1-score (micro avg) 0.7577 2023-10-15 04:38:36,988 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:38:53,623 epoch 10 - iter 89/894 - loss 0.00631867 - time (sec): 16.63 - samples/sec: 496.94 - lr: 0.000015 - momentum: 0.000000 2023-10-15 04:39:10,822 epoch 10 - iter 178/894 - loss 0.00579084 - time (sec): 33.83 - samples/sec: 517.16 - lr: 0.000013 - momentum: 0.000000 2023-10-15 04:39:27,560 epoch 10 - iter 267/894 - loss 0.00739788 - time (sec): 50.57 - samples/sec: 521.17 - lr: 0.000012 - momentum: 0.000000 2023-10-15 04:39:46,005 epoch 10 - iter 356/894 - loss 0.00899480 - time (sec): 69.02 - samples/sec: 519.49 - lr: 0.000010 - momentum: 0.000000 2023-10-15 04:40:02,766 epoch 10 - iter 445/894 - loss 0.00779425 - time (sec): 85.78 - samples/sec: 512.73 - lr: 0.000008 - momentum: 0.000000 2023-10-15 04:40:18,916 epoch 10 - iter 534/894 - loss 0.00861217 - time (sec): 101.93 - samples/sec: 508.64 - lr: 0.000007 - momentum: 0.000000 2023-10-15 04:40:35,444 epoch 10 - iter 623/894 - loss 0.00785899 - time (sec): 118.45 - samples/sec: 512.67 - lr: 0.000005 - momentum: 0.000000 2023-10-15 04:40:51,915 epoch 10 - iter 712/894 - loss 0.00783975 - time (sec): 134.93 - samples/sec: 511.39 - lr: 0.000004 - momentum: 0.000000 2023-10-15 04:41:08,151 epoch 10 - iter 801/894 - loss 0.00785490 - time (sec): 151.16 - samples/sec: 507.30 - lr: 0.000002 - momentum: 0.000000 2023-10-15 04:41:25,522 epoch 10 - iter 890/894 - loss 0.00775187 - time (sec): 168.53 - samples/sec: 511.62 - lr: 0.000000 - momentum: 0.000000 2023-10-15 04:41:26,204 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:41:26,204 EPOCH 10 done: loss 0.0077 - lr: 0.000000 2023-10-15 04:41:52,334 DEV : loss 0.24051038920879364 - f1-score (micro avg) 0.7591 2023-10-15 04:41:52,948 ---------------------------------------------------------------------------------------------------- 2023-10-15 04:41:52,949 Loading model from best epoch ... 2023-10-15 04:42:00,352 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time 2023-10-15 04:42:22,999 Results: - F-score (micro) 0.7589 - F-score (macro) 0.6502 - Accuracy 0.629 By class: precision recall f1-score support loc 0.8484 0.8641 0.8562 596 pers 0.6733 0.8168 0.7381 333 org 0.5600 0.5303 0.5447 132 prod 0.5439 0.4697 0.5041 66 time 0.5849 0.6327 0.6078 49 micro avg 0.7376 0.7815 0.7589 1176 macro avg 0.6421 0.6627 0.6502 1176 weighted avg 0.7384 0.7815 0.7577 1176 2023-10-15 04:42:22,999 ----------------------------------------------------------------------------------------------------