Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697317753.d3463e005216.2433.5 +3 -0
- test.tsv +0 -0
- training.log +265 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac35f669199bb854af06036f74dba23077049dec3b20c5e8ecc7e3dd91b55390
|
3 |
+
size 870841135
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 21:12:15 0.0002 1.8272 0.4691 0.0000 0.0000 0.0000 0.0000
|
3 |
+
2 21:15:21 0.0001 0.3593 0.2348 0.5315 0.4621 0.4944 0.3460
|
4 |
+
3 21:18:29 0.0001 0.1959 0.1630 0.6512 0.7154 0.6818 0.5443
|
5 |
+
4 21:21:41 0.0001 0.1079 0.1377 0.7217 0.7725 0.7462 0.6187
|
6 |
+
5 21:24:55 0.0001 0.0672 0.1688 0.7465 0.7459 0.7462 0.6131
|
7 |
+
6 21:28:03 0.0001 0.0434 0.1666 0.7630 0.7701 0.7665 0.6392
|
8 |
+
7 21:31:15 0.0001 0.0303 0.1883 0.7777 0.7686 0.7731 0.6459
|
9 |
+
8 21:34:26 0.0000 0.0223 0.1866 0.7685 0.7787 0.7736 0.6480
|
10 |
+
9 21:37:34 0.0000 0.0176 0.1906 0.7453 0.7826 0.7635 0.6356
|
11 |
+
10 21:40:43 0.0000 0.0142 0.1945 0.7618 0.7803 0.7710 0.6435
|
runs/events.out.tfevents.1697317753.d3463e005216.2433.5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68e95fc5ee6543df24127899c88c64f5a3c22c17285bbff53fb56345b619b6f1
|
3 |
+
size 253592
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-14 21:09:13,480 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-14 21:09:13,481 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=21, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-14 21:09:13,481 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-14 21:09:13,481 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
73 |
+
2023-10-14 21:09:13,481 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-14 21:09:13,481 Train: 3575 sentences
|
75 |
+
2023-10-14 21:09:13,481 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-14 21:09:13,481 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-14 21:09:13,481 Training Params:
|
78 |
+
2023-10-14 21:09:13,481 - learning_rate: "0.00016"
|
79 |
+
2023-10-14 21:09:13,481 - mini_batch_size: "8"
|
80 |
+
2023-10-14 21:09:13,481 - max_epochs: "10"
|
81 |
+
2023-10-14 21:09:13,481 - shuffle: "True"
|
82 |
+
2023-10-14 21:09:13,481 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-14 21:09:13,481 Plugins:
|
84 |
+
2023-10-14 21:09:13,481 - TensorboardLogger
|
85 |
+
2023-10-14 21:09:13,481 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-14 21:09:13,481 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-14 21:09:13,481 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-14 21:09:13,481 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-14 21:09:13,482 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-14 21:09:13,482 Computation:
|
91 |
+
2023-10-14 21:09:13,482 - compute on device: cuda:0
|
92 |
+
2023-10-14 21:09:13,482 - embedding storage: none
|
93 |
+
2023-10-14 21:09:13,482 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-14 21:09:13,482 Model training base path: "hmbench-hipe2020/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
|
95 |
+
2023-10-14 21:09:13,482 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-14 21:09:13,482 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-14 21:09:13,482 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-14 21:09:28,751 epoch 1 - iter 44/447 - loss 3.05259660 - time (sec): 15.27 - samples/sec: 513.49 - lr: 0.000015 - momentum: 0.000000
|
99 |
+
2023-10-14 21:09:46,378 epoch 1 - iter 88/447 - loss 3.03130581 - time (sec): 32.90 - samples/sec: 533.78 - lr: 0.000031 - momentum: 0.000000
|
100 |
+
2023-10-14 21:10:02,233 epoch 1 - iter 132/447 - loss 2.97859953 - time (sec): 48.75 - samples/sec: 536.12 - lr: 0.000047 - momentum: 0.000000
|
101 |
+
2023-10-14 21:10:18,645 epoch 1 - iter 176/447 - loss 2.82805827 - time (sec): 65.16 - samples/sec: 545.79 - lr: 0.000063 - momentum: 0.000000
|
102 |
+
2023-10-14 21:10:34,847 epoch 1 - iter 220/447 - loss 2.65793730 - time (sec): 81.36 - samples/sec: 549.19 - lr: 0.000078 - momentum: 0.000000
|
103 |
+
2023-10-14 21:10:50,453 epoch 1 - iter 264/447 - loss 2.48457680 - time (sec): 96.97 - samples/sec: 548.84 - lr: 0.000094 - momentum: 0.000000
|
104 |
+
2023-10-14 21:11:05,887 epoch 1 - iter 308/447 - loss 2.30687635 - time (sec): 112.40 - samples/sec: 547.47 - lr: 0.000110 - momentum: 0.000000
|
105 |
+
2023-10-14 21:11:21,021 epoch 1 - iter 352/447 - loss 2.13426617 - time (sec): 127.54 - samples/sec: 545.68 - lr: 0.000126 - momentum: 0.000000
|
106 |
+
2023-10-14 21:11:36,177 epoch 1 - iter 396/447 - loss 1.97499593 - time (sec): 142.69 - samples/sec: 542.47 - lr: 0.000141 - momentum: 0.000000
|
107 |
+
2023-10-14 21:11:51,265 epoch 1 - iter 440/447 - loss 1.84836303 - time (sec): 157.78 - samples/sec: 539.83 - lr: 0.000157 - momentum: 0.000000
|
108 |
+
2023-10-14 21:11:53,680 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-14 21:11:53,681 EPOCH 1 done: loss 1.8272 - lr: 0.000157
|
110 |
+
2023-10-14 21:12:15,957 DEV : loss 0.4690864682197571 - f1-score (micro avg) 0.0
|
111 |
+
2023-10-14 21:12:15,982 ----------------------------------------------------------------------------------------------------
|
112 |
+
2023-10-14 21:12:31,700 epoch 2 - iter 44/447 - loss 0.47142257 - time (sec): 15.72 - samples/sec: 549.94 - lr: 0.000158 - momentum: 0.000000
|
113 |
+
2023-10-14 21:12:47,381 epoch 2 - iter 88/447 - loss 0.50496765 - time (sec): 31.40 - samples/sec: 556.84 - lr: 0.000157 - momentum: 0.000000
|
114 |
+
2023-10-14 21:13:02,839 epoch 2 - iter 132/447 - loss 0.48438537 - time (sec): 46.85 - samples/sec: 547.37 - lr: 0.000155 - momentum: 0.000000
|
115 |
+
2023-10-14 21:13:18,182 epoch 2 - iter 176/447 - loss 0.45854379 - time (sec): 62.20 - samples/sec: 544.15 - lr: 0.000153 - momentum: 0.000000
|
116 |
+
2023-10-14 21:13:33,385 epoch 2 - iter 220/447 - loss 0.43111071 - time (sec): 77.40 - samples/sec: 541.65 - lr: 0.000151 - momentum: 0.000000
|
117 |
+
2023-10-14 21:13:48,337 epoch 2 - iter 264/447 - loss 0.41504902 - time (sec): 92.35 - samples/sec: 537.11 - lr: 0.000150 - momentum: 0.000000
|
118 |
+
2023-10-14 21:14:03,857 epoch 2 - iter 308/447 - loss 0.40207151 - time (sec): 107.87 - samples/sec: 538.55 - lr: 0.000148 - momentum: 0.000000
|
119 |
+
2023-10-14 21:14:19,642 epoch 2 - iter 352/447 - loss 0.38384323 - time (sec): 123.66 - samples/sec: 540.62 - lr: 0.000146 - momentum: 0.000000
|
120 |
+
2023-10-14 21:14:35,295 epoch 2 - iter 396/447 - loss 0.37175563 - time (sec): 139.31 - samples/sec: 541.82 - lr: 0.000144 - momentum: 0.000000
|
121 |
+
2023-10-14 21:14:52,726 epoch 2 - iter 440/447 - loss 0.36035038 - time (sec): 156.74 - samples/sec: 542.41 - lr: 0.000143 - momentum: 0.000000
|
122 |
+
2023-10-14 21:14:55,351 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-14 21:14:55,351 EPOCH 2 done: loss 0.3593 - lr: 0.000143
|
124 |
+
2023-10-14 21:15:21,373 DEV : loss 0.2348013073205948 - f1-score (micro avg) 0.4944
|
125 |
+
2023-10-14 21:15:21,399 saving best model
|
126 |
+
2023-10-14 21:15:21,992 ----------------------------------------------------------------------------------------------------
|
127 |
+
2023-10-14 21:15:37,229 epoch 3 - iter 44/447 - loss 0.23794894 - time (sec): 15.24 - samples/sec: 504.20 - lr: 0.000141 - momentum: 0.000000
|
128 |
+
2023-10-14 21:15:53,173 epoch 3 - iter 88/447 - loss 0.22177517 - time (sec): 31.18 - samples/sec: 521.41 - lr: 0.000139 - momentum: 0.000000
|
129 |
+
2023-10-14 21:16:09,291 epoch 3 - iter 132/447 - loss 0.21912354 - time (sec): 47.30 - samples/sec: 524.29 - lr: 0.000137 - momentum: 0.000000
|
130 |
+
2023-10-14 21:16:24,523 epoch 3 - iter 176/447 - loss 0.21408920 - time (sec): 62.53 - samples/sec: 520.39 - lr: 0.000135 - momentum: 0.000000
|
131 |
+
2023-10-14 21:16:42,440 epoch 3 - iter 220/447 - loss 0.21302112 - time (sec): 80.45 - samples/sec: 530.27 - lr: 0.000134 - momentum: 0.000000
|
132 |
+
2023-10-14 21:16:58,045 epoch 3 - iter 264/447 - loss 0.21166677 - time (sec): 96.05 - samples/sec: 533.24 - lr: 0.000132 - momentum: 0.000000
|
133 |
+
2023-10-14 21:17:13,455 epoch 3 - iter 308/447 - loss 0.20964952 - time (sec): 111.46 - samples/sec: 533.42 - lr: 0.000130 - momentum: 0.000000
|
134 |
+
2023-10-14 21:17:29,406 epoch 3 - iter 352/447 - loss 0.20346960 - time (sec): 127.41 - samples/sec: 538.12 - lr: 0.000128 - momentum: 0.000000
|
135 |
+
2023-10-14 21:17:44,559 epoch 3 - iter 396/447 - loss 0.20088993 - time (sec): 142.57 - samples/sec: 535.56 - lr: 0.000127 - momentum: 0.000000
|
136 |
+
2023-10-14 21:18:00,372 epoch 3 - iter 440/447 - loss 0.19704251 - time (sec): 158.38 - samples/sec: 537.79 - lr: 0.000125 - momentum: 0.000000
|
137 |
+
2023-10-14 21:18:02,860 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-14 21:18:02,860 EPOCH 3 done: loss 0.1959 - lr: 0.000125
|
139 |
+
2023-10-14 21:18:29,261 DEV : loss 0.16303199529647827 - f1-score (micro avg) 0.6818
|
140 |
+
2023-10-14 21:18:29,300 saving best model
|
141 |
+
2023-10-14 21:18:34,235 ----------------------------------------------------------------------------------------------------
|
142 |
+
2023-10-14 21:18:49,598 epoch 4 - iter 44/447 - loss 0.11035298 - time (sec): 15.36 - samples/sec: 531.97 - lr: 0.000123 - momentum: 0.000000
|
143 |
+
2023-10-14 21:19:05,243 epoch 4 - iter 88/447 - loss 0.10572054 - time (sec): 31.01 - samples/sec: 540.01 - lr: 0.000121 - momentum: 0.000000
|
144 |
+
2023-10-14 21:19:20,470 epoch 4 - iter 132/447 - loss 0.11181937 - time (sec): 46.23 - samples/sec: 531.53 - lr: 0.000119 - momentum: 0.000000
|
145 |
+
2023-10-14 21:19:35,766 epoch 4 - iter 176/447 - loss 0.11352787 - time (sec): 61.53 - samples/sec: 533.58 - lr: 0.000118 - momentum: 0.000000
|
146 |
+
2023-10-14 21:19:53,677 epoch 4 - iter 220/447 - loss 0.11538210 - time (sec): 79.44 - samples/sec: 532.51 - lr: 0.000116 - momentum: 0.000000
|
147 |
+
2023-10-14 21:20:09,762 epoch 4 - iter 264/447 - loss 0.11371066 - time (sec): 95.53 - samples/sec: 533.46 - lr: 0.000114 - momentum: 0.000000
|
148 |
+
2023-10-14 21:20:25,452 epoch 4 - iter 308/447 - loss 0.11258637 - time (sec): 111.22 - samples/sec: 534.23 - lr: 0.000112 - momentum: 0.000000
|
149 |
+
2023-10-14 21:20:41,356 epoch 4 - iter 352/447 - loss 0.11068622 - time (sec): 127.12 - samples/sec: 537.00 - lr: 0.000111 - momentum: 0.000000
|
150 |
+
2023-10-14 21:20:57,025 epoch 4 - iter 396/447 - loss 0.10972902 - time (sec): 142.79 - samples/sec: 536.79 - lr: 0.000109 - momentum: 0.000000
|
151 |
+
2023-10-14 21:21:13,144 epoch 4 - iter 440/447 - loss 0.10846253 - time (sec): 158.91 - samples/sec: 536.32 - lr: 0.000107 - momentum: 0.000000
|
152 |
+
2023-10-14 21:21:15,594 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-14 21:21:15,595 EPOCH 4 done: loss 0.1079 - lr: 0.000107
|
154 |
+
2023-10-14 21:21:41,965 DEV : loss 0.13766774535179138 - f1-score (micro avg) 0.7462
|
155 |
+
2023-10-14 21:21:41,991 saving best model
|
156 |
+
2023-10-14 21:21:45,171 ----------------------------------------------------------------------------------------------------
|
157 |
+
2023-10-14 21:22:00,307 epoch 5 - iter 44/447 - loss 0.07404548 - time (sec): 15.13 - samples/sec: 510.58 - lr: 0.000105 - momentum: 0.000000
|
158 |
+
2023-10-14 21:22:16,591 epoch 5 - iter 88/447 - loss 0.07807763 - time (sec): 31.42 - samples/sec: 530.92 - lr: 0.000103 - momentum: 0.000000
|
159 |
+
2023-10-14 21:22:32,708 epoch 5 - iter 132/447 - loss 0.06752753 - time (sec): 47.53 - samples/sec: 544.30 - lr: 0.000102 - momentum: 0.000000
|
160 |
+
2023-10-14 21:22:48,572 epoch 5 - iter 176/447 - loss 0.06407989 - time (sec): 63.40 - samples/sec: 542.33 - lr: 0.000100 - momentum: 0.000000
|
161 |
+
2023-10-14 21:23:03,676 epoch 5 - iter 220/447 - loss 0.06586669 - time (sec): 78.50 - samples/sec: 538.22 - lr: 0.000098 - momentum: 0.000000
|
162 |
+
2023-10-14 21:23:19,808 epoch 5 - iter 264/447 - loss 0.06564498 - time (sec): 94.63 - samples/sec: 539.62 - lr: 0.000096 - momentum: 0.000000
|
163 |
+
2023-10-14 21:23:35,863 epoch 5 - iter 308/447 - loss 0.06768844 - time (sec): 110.69 - samples/sec: 532.24 - lr: 0.000095 - momentum: 0.000000
|
164 |
+
2023-10-14 21:23:51,575 epoch 5 - iter 352/447 - loss 0.06637806 - time (sec): 126.40 - samples/sec: 532.82 - lr: 0.000093 - momentum: 0.000000
|
165 |
+
2023-10-14 21:24:09,379 epoch 5 - iter 396/447 - loss 0.06890479 - time (sec): 144.21 - samples/sec: 535.15 - lr: 0.000091 - momentum: 0.000000
|
166 |
+
2023-10-14 21:24:25,081 epoch 5 - iter 440/447 - loss 0.06779283 - time (sec): 159.91 - samples/sec: 534.05 - lr: 0.000089 - momentum: 0.000000
|
167 |
+
2023-10-14 21:24:27,437 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-14 21:24:27,438 EPOCH 5 done: loss 0.0672 - lr: 0.000089
|
169 |
+
2023-10-14 21:24:55,530 DEV : loss 0.1687537580728531 - f1-score (micro avg) 0.7462
|
170 |
+
2023-10-14 21:24:55,560 ----------------------------------------------------------------------------------------------------
|
171 |
+
2023-10-14 21:25:11,105 epoch 6 - iter 44/447 - loss 0.04321969 - time (sec): 15.54 - samples/sec: 509.18 - lr: 0.000087 - momentum: 0.000000
|
172 |
+
2023-10-14 21:25:27,055 epoch 6 - iter 88/447 - loss 0.04095358 - time (sec): 31.49 - samples/sec: 516.82 - lr: 0.000086 - momentum: 0.000000
|
173 |
+
2023-10-14 21:25:42,575 epoch 6 - iter 132/447 - loss 0.04297395 - time (sec): 47.01 - samples/sec: 524.26 - lr: 0.000084 - momentum: 0.000000
|
174 |
+
2023-10-14 21:25:58,344 epoch 6 - iter 176/447 - loss 0.04445698 - time (sec): 62.78 - samples/sec: 531.96 - lr: 0.000082 - momentum: 0.000000
|
175 |
+
2023-10-14 21:26:13,546 epoch 6 - iter 220/447 - loss 0.04268428 - time (sec): 77.99 - samples/sec: 528.41 - lr: 0.000080 - momentum: 0.000000
|
176 |
+
2023-10-14 21:26:30,859 epoch 6 - iter 264/447 - loss 0.04553797 - time (sec): 95.30 - samples/sec: 529.59 - lr: 0.000079 - momentum: 0.000000
|
177 |
+
2023-10-14 21:26:47,490 epoch 6 - iter 308/447 - loss 0.04719176 - time (sec): 111.93 - samples/sec: 534.28 - lr: 0.000077 - momentum: 0.000000
|
178 |
+
2023-10-14 21:27:03,050 epoch 6 - iter 352/447 - loss 0.04533648 - time (sec): 127.49 - samples/sec: 535.45 - lr: 0.000075 - momentum: 0.000000
|
179 |
+
2023-10-14 21:27:19,160 epoch 6 - iter 396/447 - loss 0.04482017 - time (sec): 143.60 - samples/sec: 537.65 - lr: 0.000073 - momentum: 0.000000
|
180 |
+
2023-10-14 21:27:34,862 epoch 6 - iter 440/447 - loss 0.04379707 - time (sec): 159.30 - samples/sec: 536.84 - lr: 0.000072 - momentum: 0.000000
|
181 |
+
2023-10-14 21:27:37,176 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-14 21:27:37,177 EPOCH 6 done: loss 0.0434 - lr: 0.000072
|
183 |
+
2023-10-14 21:28:03,901 DEV : loss 0.1666191667318344 - f1-score (micro avg) 0.7665
|
184 |
+
2023-10-14 21:28:03,928 saving best model
|
185 |
+
2023-10-14 21:28:06,993 ----------------------------------------------------------------------------------------------------
|
186 |
+
2023-10-14 21:28:22,547 epoch 7 - iter 44/447 - loss 0.03003648 - time (sec): 15.55 - samples/sec: 546.70 - lr: 0.000070 - momentum: 0.000000
|
187 |
+
2023-10-14 21:28:40,163 epoch 7 - iter 88/447 - loss 0.03562673 - time (sec): 33.17 - samples/sec: 552.39 - lr: 0.000068 - momentum: 0.000000
|
188 |
+
2023-10-14 21:28:55,731 epoch 7 - iter 132/447 - loss 0.04006384 - time (sec): 48.74 - samples/sec: 547.83 - lr: 0.000066 - momentum: 0.000000
|
189 |
+
2023-10-14 21:29:11,201 epoch 7 - iter 176/447 - loss 0.03708255 - time (sec): 64.21 - samples/sec: 544.17 - lr: 0.000064 - momentum: 0.000000
|
190 |
+
2023-10-14 21:29:26,968 epoch 7 - iter 220/447 - loss 0.03429430 - time (sec): 79.97 - samples/sec: 545.69 - lr: 0.000063 - momentum: 0.000000
|
191 |
+
2023-10-14 21:29:42,856 epoch 7 - iter 264/447 - loss 0.03272464 - time (sec): 95.86 - samples/sec: 539.78 - lr: 0.000061 - momentum: 0.000000
|
192 |
+
2023-10-14 21:29:59,050 epoch 7 - iter 308/447 - loss 0.03215421 - time (sec): 112.06 - samples/sec: 541.01 - lr: 0.000059 - momentum: 0.000000
|
193 |
+
2023-10-14 21:30:14,596 epoch 7 - iter 352/447 - loss 0.03128111 - time (sec): 127.60 - samples/sec: 539.66 - lr: 0.000057 - momentum: 0.000000
|
194 |
+
2023-10-14 21:30:29,944 epoch 7 - iter 396/447 - loss 0.03125527 - time (sec): 142.95 - samples/sec: 537.71 - lr: 0.000056 - momentum: 0.000000
|
195 |
+
2023-10-14 21:30:45,865 epoch 7 - iter 440/447 - loss 0.03057599 - time (sec): 158.87 - samples/sec: 538.26 - lr: 0.000054 - momentum: 0.000000
|
196 |
+
2023-10-14 21:30:48,160 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-14 21:30:48,161 EPOCH 7 done: loss 0.0303 - lr: 0.000054
|
198 |
+
2023-10-14 21:31:15,339 DEV : loss 0.18828615546226501 - f1-score (micro avg) 0.7731
|
199 |
+
2023-10-14 21:31:15,366 saving best model
|
200 |
+
2023-10-14 21:31:18,393 ----------------------------------------------------------------------------------------------------
|
201 |
+
2023-10-14 21:31:34,147 epoch 8 - iter 44/447 - loss 0.02130714 - time (sec): 15.75 - samples/sec: 541.91 - lr: 0.000052 - momentum: 0.000000
|
202 |
+
2023-10-14 21:31:49,826 epoch 8 - iter 88/447 - loss 0.02342729 - time (sec): 31.43 - samples/sec: 541.15 - lr: 0.000050 - momentum: 0.000000
|
203 |
+
2023-10-14 21:32:05,348 epoch 8 - iter 132/447 - loss 0.02076442 - time (sec): 46.95 - samples/sec: 533.30 - lr: 0.000048 - momentum: 0.000000
|
204 |
+
2023-10-14 21:32:20,821 epoch 8 - iter 176/447 - loss 0.02165836 - time (sec): 62.43 - samples/sec: 531.70 - lr: 0.000047 - momentum: 0.000000
|
205 |
+
2023-10-14 21:32:37,129 epoch 8 - iter 220/447 - loss 0.02071764 - time (sec): 78.73 - samples/sec: 536.62 - lr: 0.000045 - momentum: 0.000000
|
206 |
+
2023-10-14 21:32:54,732 epoch 8 - iter 264/447 - loss 0.02334353 - time (sec): 96.34 - samples/sec: 537.40 - lr: 0.000043 - momentum: 0.000000
|
207 |
+
2023-10-14 21:33:10,358 epoch 8 - iter 308/447 - loss 0.02194638 - time (sec): 111.96 - samples/sec: 534.11 - lr: 0.000041 - momentum: 0.000000
|
208 |
+
2023-10-14 21:33:25,992 epoch 8 - iter 352/447 - loss 0.02099589 - time (sec): 127.60 - samples/sec: 536.19 - lr: 0.000040 - momentum: 0.000000
|
209 |
+
2023-10-14 21:33:42,092 epoch 8 - iter 396/447 - loss 0.02213319 - time (sec): 143.70 - samples/sec: 539.32 - lr: 0.000038 - momentum: 0.000000
|
210 |
+
2023-10-14 21:33:57,461 epoch 8 - iter 440/447 - loss 0.02255177 - time (sec): 159.07 - samples/sec: 535.75 - lr: 0.000036 - momentum: 0.000000
|
211 |
+
2023-10-14 21:33:59,997 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-14 21:33:59,997 EPOCH 8 done: loss 0.0223 - lr: 0.000036
|
213 |
+
2023-10-14 21:34:26,324 DEV : loss 0.18658936023712158 - f1-score (micro avg) 0.7736
|
214 |
+
2023-10-14 21:34:26,350 saving best model
|
215 |
+
2023-10-14 21:34:27,348 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-14 21:34:45,188 epoch 9 - iter 44/447 - loss 0.01651796 - time (sec): 17.84 - samples/sec: 556.26 - lr: 0.000034 - momentum: 0.000000
|
217 |
+
2023-10-14 21:35:00,545 epoch 9 - iter 88/447 - loss 0.01768868 - time (sec): 33.20 - samples/sec: 541.02 - lr: 0.000032 - momentum: 0.000000
|
218 |
+
2023-10-14 21:35:15,508 epoch 9 - iter 132/447 - loss 0.02368658 - time (sec): 48.16 - samples/sec: 526.96 - lr: 0.000031 - momentum: 0.000000
|
219 |
+
2023-10-14 21:35:31,645 epoch 9 - iter 176/447 - loss 0.02037549 - time (sec): 64.30 - samples/sec: 533.36 - lr: 0.000029 - momentum: 0.000000
|
220 |
+
2023-10-14 21:35:47,262 epoch 9 - iter 220/447 - loss 0.02014087 - time (sec): 79.91 - samples/sec: 530.52 - lr: 0.000027 - momentum: 0.000000
|
221 |
+
2023-10-14 21:36:02,787 epoch 9 - iter 264/447 - loss 0.01849602 - time (sec): 95.44 - samples/sec: 531.50 - lr: 0.000025 - momentum: 0.000000
|
222 |
+
2023-10-14 21:36:18,404 epoch 9 - iter 308/447 - loss 0.01829682 - time (sec): 111.06 - samples/sec: 535.34 - lr: 0.000024 - momentum: 0.000000
|
223 |
+
2023-10-14 21:36:34,355 epoch 9 - iter 352/447 - loss 0.01773948 - time (sec): 127.01 - samples/sec: 536.82 - lr: 0.000022 - momentum: 0.000000
|
224 |
+
2023-10-14 21:36:50,308 epoch 9 - iter 396/447 - loss 0.01801785 - time (sec): 142.96 - samples/sec: 539.52 - lr: 0.000020 - momentum: 0.000000
|
225 |
+
2023-10-14 21:37:05,925 epoch 9 - iter 440/447 - loss 0.01754370 - time (sec): 158.58 - samples/sec: 538.92 - lr: 0.000018 - momentum: 0.000000
|
226 |
+
2023-10-14 21:37:08,236 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-14 21:37:08,236 EPOCH 9 done: loss 0.0176 - lr: 0.000018
|
228 |
+
2023-10-14 21:37:34,203 DEV : loss 0.1905660331249237 - f1-score (micro avg) 0.7635
|
229 |
+
2023-10-14 21:37:34,230 ----------------------------------------------------------------------------------------------------
|
230 |
+
2023-10-14 21:37:49,693 epoch 10 - iter 44/447 - loss 0.00886578 - time (sec): 15.46 - samples/sec: 543.68 - lr: 0.000016 - momentum: 0.000000
|
231 |
+
2023-10-14 21:38:04,706 epoch 10 - iter 88/447 - loss 0.02260186 - time (sec): 30.48 - samples/sec: 526.99 - lr: 0.000015 - momentum: 0.000000
|
232 |
+
2023-10-14 21:38:20,881 epoch 10 - iter 132/447 - loss 0.01836041 - time (sec): 46.65 - samples/sec: 533.38 - lr: 0.000013 - momentum: 0.000000
|
233 |
+
2023-10-14 21:38:36,682 epoch 10 - iter 176/447 - loss 0.01658490 - time (sec): 62.45 - samples/sec: 524.38 - lr: 0.000011 - momentum: 0.000000
|
234 |
+
2023-10-14 21:38:54,679 epoch 10 - iter 220/447 - loss 0.01621745 - time (sec): 80.45 - samples/sec: 531.55 - lr: 0.000009 - momentum: 0.000000
|
235 |
+
2023-10-14 21:39:10,341 epoch 10 - iter 264/447 - loss 0.01459106 - time (sec): 96.11 - samples/sec: 527.46 - lr: 0.000008 - momentum: 0.000000
|
236 |
+
2023-10-14 21:39:26,500 epoch 10 - iter 308/447 - loss 0.01436938 - time (sec): 112.27 - samples/sec: 527.94 - lr: 0.000006 - momentum: 0.000000
|
237 |
+
2023-10-14 21:39:42,850 epoch 10 - iter 352/447 - loss 0.01351933 - time (sec): 128.62 - samples/sec: 530.03 - lr: 0.000004 - momentum: 0.000000
|
238 |
+
2023-10-14 21:39:59,071 epoch 10 - iter 396/447 - loss 0.01384647 - time (sec): 144.84 - samples/sec: 531.61 - lr: 0.000002 - momentum: 0.000000
|
239 |
+
2023-10-14 21:40:14,837 epoch 10 - iter 440/447 - loss 0.01429302 - time (sec): 160.61 - samples/sec: 531.46 - lr: 0.000001 - momentum: 0.000000
|
240 |
+
2023-10-14 21:40:17,225 ----------------------------------------------------------------------------------------------------
|
241 |
+
2023-10-14 21:40:17,226 EPOCH 10 done: loss 0.0142 - lr: 0.000001
|
242 |
+
2023-10-14 21:40:43,527 DEV : loss 0.19451487064361572 - f1-score (micro avg) 0.771
|
243 |
+
2023-10-14 21:40:44,146 ----------------------------------------------------------------------------------------------------
|
244 |
+
2023-10-14 21:40:44,148 Loading model from best epoch ...
|
245 |
+
2023-10-14 21:40:46,758 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
246 |
+
2023-10-14 21:41:09,803
|
247 |
+
Results:
|
248 |
+
- F-score (micro) 0.7291
|
249 |
+
- F-score (macro) 0.6237
|
250 |
+
- Accuracy 0.5887
|
251 |
+
|
252 |
+
By class:
|
253 |
+
precision recall f1-score support
|
254 |
+
|
255 |
+
loc 0.8557 0.8658 0.8607 596
|
256 |
+
pers 0.6269 0.7417 0.6795 333
|
257 |
+
org 0.4020 0.6061 0.4834 132
|
258 |
+
prod 0.5918 0.4394 0.5043 66
|
259 |
+
time 0.5536 0.6327 0.5905 49
|
260 |
+
|
261 |
+
micro avg 0.6941 0.7679 0.7291 1176
|
262 |
+
macro avg 0.6060 0.6571 0.6237 1176
|
263 |
+
weighted avg 0.7126 0.7679 0.7358 1176
|
264 |
+
|
265 |
+
2023-10-14 21:41:09,803 ----------------------------------------------------------------------------------------------------
|