File size: 25,320 Bytes
0a8e007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
2023-10-12 17:24:51,784 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,787 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-12 17:24:51,787 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,787 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-12 17:24:51,787 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,787 Train:  7936 sentences
2023-10-12 17:24:51,787         (train_with_dev=False, train_with_test=False)
2023-10-12 17:24:51,787 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,787 Training Params:
2023-10-12 17:24:51,787  - learning_rate: "0.00015" 
2023-10-12 17:24:51,787  - mini_batch_size: "4"
2023-10-12 17:24:51,788  - max_epochs: "10"
2023-10-12 17:24:51,788  - shuffle: "True"
2023-10-12 17:24:51,788 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,788 Plugins:
2023-10-12 17:24:51,788  - TensorboardLogger
2023-10-12 17:24:51,788  - LinearScheduler | warmup_fraction: '0.1'
2023-10-12 17:24:51,788 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,788 Final evaluation on model from best epoch (best-model.pt)
2023-10-12 17:24:51,788  - metric: "('micro avg', 'f1-score')"
2023-10-12 17:24:51,788 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,788 Computation:
2023-10-12 17:24:51,788  - compute on device: cuda:0
2023-10-12 17:24:51,788  - embedding storage: none
2023-10-12 17:24:51,788 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,788 Model training base path: "hmbench-icdar/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2"
2023-10-12 17:24:51,789 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,789 ----------------------------------------------------------------------------------------------------
2023-10-12 17:24:51,789 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-12 17:25:42,845 epoch 1 - iter 198/1984 - loss 2.55536644 - time (sec): 51.05 - samples/sec: 322.35 - lr: 0.000015 - momentum: 0.000000
2023-10-12 17:26:33,679 epoch 1 - iter 396/1984 - loss 2.41138788 - time (sec): 101.89 - samples/sec: 306.71 - lr: 0.000030 - momentum: 0.000000
2023-10-12 17:27:25,852 epoch 1 - iter 594/1984 - loss 2.08406574 - time (sec): 154.06 - samples/sec: 311.46 - lr: 0.000045 - momentum: 0.000000
2023-10-12 17:28:17,880 epoch 1 - iter 792/1984 - loss 1.76238592 - time (sec): 206.09 - samples/sec: 309.43 - lr: 0.000060 - momentum: 0.000000
2023-10-12 17:29:09,576 epoch 1 - iter 990/1984 - loss 1.49063858 - time (sec): 257.79 - samples/sec: 311.56 - lr: 0.000075 - momentum: 0.000000
2023-10-12 17:30:03,660 epoch 1 - iter 1188/1984 - loss 1.28530974 - time (sec): 311.87 - samples/sec: 308.92 - lr: 0.000090 - momentum: 0.000000
2023-10-12 17:30:54,807 epoch 1 - iter 1386/1984 - loss 1.13019078 - time (sec): 363.02 - samples/sec: 313.91 - lr: 0.000105 - momentum: 0.000000
2023-10-12 17:31:46,000 epoch 1 - iter 1584/1984 - loss 1.01185667 - time (sec): 414.21 - samples/sec: 316.00 - lr: 0.000120 - momentum: 0.000000
2023-10-12 17:32:36,962 epoch 1 - iter 1782/1984 - loss 0.92502162 - time (sec): 465.17 - samples/sec: 315.93 - lr: 0.000135 - momentum: 0.000000
2023-10-12 17:33:30,270 epoch 1 - iter 1980/1984 - loss 0.84977154 - time (sec): 518.48 - samples/sec: 315.76 - lr: 0.000150 - momentum: 0.000000
2023-10-12 17:33:31,299 ----------------------------------------------------------------------------------------------------
2023-10-12 17:33:31,300 EPOCH 1 done: loss 0.8485 - lr: 0.000150
2023-10-12 17:33:56,893 DEV : loss 0.16075488924980164 - f1-score (micro avg)  0.5739
2023-10-12 17:33:56,945 saving best model
2023-10-12 17:33:57,979 ----------------------------------------------------------------------------------------------------
2023-10-12 17:34:51,494 epoch 2 - iter 198/1984 - loss 0.19639994 - time (sec): 53.51 - samples/sec: 310.19 - lr: 0.000148 - momentum: 0.000000
2023-10-12 17:35:42,055 epoch 2 - iter 396/1984 - loss 0.17680493 - time (sec): 104.07 - samples/sec: 313.66 - lr: 0.000147 - momentum: 0.000000
2023-10-12 17:36:33,064 epoch 2 - iter 594/1984 - loss 0.16946243 - time (sec): 155.08 - samples/sec: 316.75 - lr: 0.000145 - momentum: 0.000000
2023-10-12 17:37:25,539 epoch 2 - iter 792/1984 - loss 0.16300567 - time (sec): 207.56 - samples/sec: 314.80 - lr: 0.000143 - momentum: 0.000000
2023-10-12 17:38:22,072 epoch 2 - iter 990/1984 - loss 0.15336618 - time (sec): 264.09 - samples/sec: 312.60 - lr: 0.000142 - momentum: 0.000000
2023-10-12 17:39:17,838 epoch 2 - iter 1188/1984 - loss 0.14671314 - time (sec): 319.86 - samples/sec: 308.67 - lr: 0.000140 - momentum: 0.000000
2023-10-12 17:40:13,646 epoch 2 - iter 1386/1984 - loss 0.14319007 - time (sec): 375.66 - samples/sec: 304.39 - lr: 0.000138 - momentum: 0.000000
2023-10-12 17:41:10,943 epoch 2 - iter 1584/1984 - loss 0.13786458 - time (sec): 432.96 - samples/sec: 304.59 - lr: 0.000137 - momentum: 0.000000
2023-10-12 17:42:07,865 epoch 2 - iter 1782/1984 - loss 0.13502095 - time (sec): 489.88 - samples/sec: 303.54 - lr: 0.000135 - momentum: 0.000000
2023-10-12 17:43:01,351 epoch 2 - iter 1980/1984 - loss 0.13266822 - time (sec): 543.37 - samples/sec: 301.33 - lr: 0.000133 - momentum: 0.000000
2023-10-12 17:43:02,387 ----------------------------------------------------------------------------------------------------
2023-10-12 17:43:02,387 EPOCH 2 done: loss 0.1326 - lr: 0.000133
2023-10-12 17:43:28,049 DEV : loss 0.08952224254608154 - f1-score (micro avg)  0.7284
2023-10-12 17:43:28,095 saving best model
2023-10-12 17:43:38,922 ----------------------------------------------------------------------------------------------------
2023-10-12 17:44:36,088 epoch 3 - iter 198/1984 - loss 0.08127744 - time (sec): 57.16 - samples/sec: 306.32 - lr: 0.000132 - momentum: 0.000000
2023-10-12 17:45:31,021 epoch 3 - iter 396/1984 - loss 0.08641176 - time (sec): 112.09 - samples/sec: 313.84 - lr: 0.000130 - momentum: 0.000000
2023-10-12 17:46:25,458 epoch 3 - iter 594/1984 - loss 0.08807778 - time (sec): 166.53 - samples/sec: 305.34 - lr: 0.000128 - momentum: 0.000000
2023-10-12 17:47:20,350 epoch 3 - iter 792/1984 - loss 0.08782288 - time (sec): 221.42 - samples/sec: 302.47 - lr: 0.000127 - momentum: 0.000000
2023-10-12 17:48:15,286 epoch 3 - iter 990/1984 - loss 0.08496675 - time (sec): 276.36 - samples/sec: 300.64 - lr: 0.000125 - momentum: 0.000000
2023-10-12 17:49:07,276 epoch 3 - iter 1188/1984 - loss 0.08486362 - time (sec): 328.35 - samples/sec: 301.13 - lr: 0.000123 - momentum: 0.000000
2023-10-12 17:50:03,093 epoch 3 - iter 1386/1984 - loss 0.08414590 - time (sec): 384.16 - samples/sec: 301.44 - lr: 0.000122 - momentum: 0.000000
2023-10-12 17:50:55,630 epoch 3 - iter 1584/1984 - loss 0.08148581 - time (sec): 436.70 - samples/sec: 304.47 - lr: 0.000120 - momentum: 0.000000
2023-10-12 17:51:51,927 epoch 3 - iter 1782/1984 - loss 0.08077785 - time (sec): 493.00 - samples/sec: 301.11 - lr: 0.000118 - momentum: 0.000000
2023-10-12 17:52:47,909 epoch 3 - iter 1980/1984 - loss 0.08075089 - time (sec): 548.98 - samples/sec: 298.09 - lr: 0.000117 - momentum: 0.000000
2023-10-12 17:52:49,212 ----------------------------------------------------------------------------------------------------
2023-10-12 17:52:49,213 EPOCH 3 done: loss 0.0808 - lr: 0.000117
2023-10-12 17:53:19,578 DEV : loss 0.10335122048854828 - f1-score (micro avg)  0.7415
2023-10-12 17:53:19,624 saving best model
2023-10-12 17:53:22,236 ----------------------------------------------------------------------------------------------------
2023-10-12 17:54:20,197 epoch 4 - iter 198/1984 - loss 0.04733732 - time (sec): 57.95 - samples/sec: 283.02 - lr: 0.000115 - momentum: 0.000000
2023-10-12 17:55:13,014 epoch 4 - iter 396/1984 - loss 0.05655464 - time (sec): 110.77 - samples/sec: 298.62 - lr: 0.000113 - momentum: 0.000000
2023-10-12 17:56:08,456 epoch 4 - iter 594/1984 - loss 0.05633847 - time (sec): 166.21 - samples/sec: 301.27 - lr: 0.000112 - momentum: 0.000000
2023-10-12 17:57:00,472 epoch 4 - iter 792/1984 - loss 0.05909280 - time (sec): 218.23 - samples/sec: 301.30 - lr: 0.000110 - momentum: 0.000000
2023-10-12 17:57:54,142 epoch 4 - iter 990/1984 - loss 0.06026255 - time (sec): 271.90 - samples/sec: 306.35 - lr: 0.000108 - momentum: 0.000000
2023-10-12 17:58:46,218 epoch 4 - iter 1188/1984 - loss 0.05861280 - time (sec): 323.97 - samples/sec: 309.30 - lr: 0.000107 - momentum: 0.000000
2023-10-12 17:59:38,647 epoch 4 - iter 1386/1984 - loss 0.05877059 - time (sec): 376.40 - samples/sec: 307.34 - lr: 0.000105 - momentum: 0.000000
2023-10-12 18:00:33,949 epoch 4 - iter 1584/1984 - loss 0.05806944 - time (sec): 431.71 - samples/sec: 306.80 - lr: 0.000103 - momentum: 0.000000
2023-10-12 18:01:25,964 epoch 4 - iter 1782/1984 - loss 0.05889933 - time (sec): 483.72 - samples/sec: 305.46 - lr: 0.000102 - momentum: 0.000000
2023-10-12 18:02:18,642 epoch 4 - iter 1980/1984 - loss 0.05870714 - time (sec): 536.40 - samples/sec: 304.90 - lr: 0.000100 - momentum: 0.000000
2023-10-12 18:02:19,847 ----------------------------------------------------------------------------------------------------
2023-10-12 18:02:19,848 EPOCH 4 done: loss 0.0587 - lr: 0.000100
2023-10-12 18:02:44,009 DEV : loss 0.12530608475208282 - f1-score (micro avg)  0.7549
2023-10-12 18:02:44,047 saving best model
2023-10-12 18:02:47,075 ----------------------------------------------------------------------------------------------------
2023-10-12 18:03:45,754 epoch 5 - iter 198/1984 - loss 0.03684763 - time (sec): 58.67 - samples/sec: 278.92 - lr: 0.000098 - momentum: 0.000000
2023-10-12 18:04:42,683 epoch 5 - iter 396/1984 - loss 0.03542942 - time (sec): 115.60 - samples/sec: 283.18 - lr: 0.000097 - momentum: 0.000000
2023-10-12 18:05:33,118 epoch 5 - iter 594/1984 - loss 0.03923047 - time (sec): 166.04 - samples/sec: 291.45 - lr: 0.000095 - momentum: 0.000000
2023-10-12 18:06:24,269 epoch 5 - iter 792/1984 - loss 0.04070365 - time (sec): 217.19 - samples/sec: 297.96 - lr: 0.000093 - momentum: 0.000000
2023-10-12 18:07:16,126 epoch 5 - iter 990/1984 - loss 0.03866158 - time (sec): 269.05 - samples/sec: 300.33 - lr: 0.000092 - momentum: 0.000000
2023-10-12 18:08:11,590 epoch 5 - iter 1188/1984 - loss 0.04048969 - time (sec): 324.51 - samples/sec: 300.36 - lr: 0.000090 - momentum: 0.000000
2023-10-12 18:09:06,534 epoch 5 - iter 1386/1984 - loss 0.04244996 - time (sec): 379.45 - samples/sec: 301.32 - lr: 0.000088 - momentum: 0.000000
2023-10-12 18:10:03,788 epoch 5 - iter 1584/1984 - loss 0.04340599 - time (sec): 436.71 - samples/sec: 299.41 - lr: 0.000087 - momentum: 0.000000
2023-10-12 18:10:55,718 epoch 5 - iter 1782/1984 - loss 0.04308350 - time (sec): 488.64 - samples/sec: 302.17 - lr: 0.000085 - momentum: 0.000000
2023-10-12 18:11:49,526 epoch 5 - iter 1980/1984 - loss 0.04432984 - time (sec): 542.44 - samples/sec: 301.87 - lr: 0.000083 - momentum: 0.000000
2023-10-12 18:11:50,632 ----------------------------------------------------------------------------------------------------
2023-10-12 18:11:50,632 EPOCH 5 done: loss 0.0443 - lr: 0.000083
2023-10-12 18:12:18,411 DEV : loss 0.1436772644519806 - f1-score (micro avg)  0.7392
2023-10-12 18:12:18,452 ----------------------------------------------------------------------------------------------------
2023-10-12 18:13:10,838 epoch 6 - iter 198/1984 - loss 0.03726587 - time (sec): 52.38 - samples/sec: 316.11 - lr: 0.000082 - momentum: 0.000000
2023-10-12 18:14:06,410 epoch 6 - iter 396/1984 - loss 0.02956098 - time (sec): 107.96 - samples/sec: 303.22 - lr: 0.000080 - momentum: 0.000000
2023-10-12 18:14:58,937 epoch 6 - iter 594/1984 - loss 0.03136481 - time (sec): 160.48 - samples/sec: 306.32 - lr: 0.000078 - momentum: 0.000000
2023-10-12 18:15:54,784 epoch 6 - iter 792/1984 - loss 0.03209960 - time (sec): 216.33 - samples/sec: 303.47 - lr: 0.000077 - momentum: 0.000000
2023-10-12 18:16:47,593 epoch 6 - iter 990/1984 - loss 0.03287748 - time (sec): 269.14 - samples/sec: 306.09 - lr: 0.000075 - momentum: 0.000000
2023-10-12 18:17:44,743 epoch 6 - iter 1188/1984 - loss 0.03282659 - time (sec): 326.29 - samples/sec: 300.73 - lr: 0.000073 - momentum: 0.000000
2023-10-12 18:18:38,567 epoch 6 - iter 1386/1984 - loss 0.03292277 - time (sec): 380.11 - samples/sec: 301.47 - lr: 0.000072 - momentum: 0.000000
2023-10-12 18:19:30,537 epoch 6 - iter 1584/1984 - loss 0.03367855 - time (sec): 432.08 - samples/sec: 302.95 - lr: 0.000070 - momentum: 0.000000
2023-10-12 18:20:27,404 epoch 6 - iter 1782/1984 - loss 0.03441227 - time (sec): 488.95 - samples/sec: 301.11 - lr: 0.000068 - momentum: 0.000000
2023-10-12 18:21:20,899 epoch 6 - iter 1980/1984 - loss 0.03431832 - time (sec): 542.45 - samples/sec: 301.61 - lr: 0.000067 - momentum: 0.000000
2023-10-12 18:21:21,962 ----------------------------------------------------------------------------------------------------
2023-10-12 18:21:21,962 EPOCH 6 done: loss 0.0342 - lr: 0.000067
2023-10-12 18:21:48,190 DEV : loss 0.18953415751457214 - f1-score (micro avg)  0.7546
2023-10-12 18:21:48,236 ----------------------------------------------------------------------------------------------------
2023-10-12 18:22:42,513 epoch 7 - iter 198/1984 - loss 0.01880897 - time (sec): 54.27 - samples/sec: 300.69 - lr: 0.000065 - momentum: 0.000000
2023-10-12 18:23:36,788 epoch 7 - iter 396/1984 - loss 0.02129238 - time (sec): 108.55 - samples/sec: 310.17 - lr: 0.000063 - momentum: 0.000000
2023-10-12 18:24:27,787 epoch 7 - iter 594/1984 - loss 0.02038739 - time (sec): 159.55 - samples/sec: 308.46 - lr: 0.000062 - momentum: 0.000000
2023-10-12 18:25:18,964 epoch 7 - iter 792/1984 - loss 0.02267150 - time (sec): 210.73 - samples/sec: 305.18 - lr: 0.000060 - momentum: 0.000000
2023-10-12 18:26:11,225 epoch 7 - iter 990/1984 - loss 0.02325419 - time (sec): 262.99 - samples/sec: 308.16 - lr: 0.000058 - momentum: 0.000000
2023-10-12 18:27:02,156 epoch 7 - iter 1188/1984 - loss 0.02443802 - time (sec): 313.92 - samples/sec: 310.04 - lr: 0.000057 - momentum: 0.000000
2023-10-12 18:27:53,992 epoch 7 - iter 1386/1984 - loss 0.02362788 - time (sec): 365.75 - samples/sec: 310.65 - lr: 0.000055 - momentum: 0.000000
2023-10-12 18:28:46,404 epoch 7 - iter 1584/1984 - loss 0.02445248 - time (sec): 418.17 - samples/sec: 310.92 - lr: 0.000053 - momentum: 0.000000
2023-10-12 18:29:42,092 epoch 7 - iter 1782/1984 - loss 0.02416577 - time (sec): 473.85 - samples/sec: 310.85 - lr: 0.000052 - momentum: 0.000000
2023-10-12 18:30:37,599 epoch 7 - iter 1980/1984 - loss 0.02497708 - time (sec): 529.36 - samples/sec: 308.90 - lr: 0.000050 - momentum: 0.000000
2023-10-12 18:30:38,861 ----------------------------------------------------------------------------------------------------
2023-10-12 18:30:38,862 EPOCH 7 done: loss 0.0251 - lr: 0.000050
2023-10-12 18:31:11,064 DEV : loss 0.2033829540014267 - f1-score (micro avg)  0.735
2023-10-12 18:31:11,110 ----------------------------------------------------------------------------------------------------
2023-10-12 18:32:08,080 epoch 8 - iter 198/1984 - loss 0.01615564 - time (sec): 56.97 - samples/sec: 290.72 - lr: 0.000048 - momentum: 0.000000
2023-10-12 18:33:04,407 epoch 8 - iter 396/1984 - loss 0.01873509 - time (sec): 113.29 - samples/sec: 297.31 - lr: 0.000047 - momentum: 0.000000
2023-10-12 18:34:00,564 epoch 8 - iter 594/1984 - loss 0.01784955 - time (sec): 169.45 - samples/sec: 304.92 - lr: 0.000045 - momentum: 0.000000
2023-10-12 18:34:54,773 epoch 8 - iter 792/1984 - loss 0.01716047 - time (sec): 223.66 - samples/sec: 301.53 - lr: 0.000043 - momentum: 0.000000
2023-10-12 18:35:48,316 epoch 8 - iter 990/1984 - loss 0.01676986 - time (sec): 277.20 - samples/sec: 299.97 - lr: 0.000042 - momentum: 0.000000
2023-10-12 18:36:43,833 epoch 8 - iter 1188/1984 - loss 0.01653262 - time (sec): 332.72 - samples/sec: 296.71 - lr: 0.000040 - momentum: 0.000000
2023-10-12 18:37:37,320 epoch 8 - iter 1386/1984 - loss 0.01775393 - time (sec): 386.21 - samples/sec: 295.96 - lr: 0.000038 - momentum: 0.000000
2023-10-12 18:38:30,408 epoch 8 - iter 1584/1984 - loss 0.01695689 - time (sec): 439.30 - samples/sec: 296.91 - lr: 0.000037 - momentum: 0.000000
2023-10-12 18:39:23,967 epoch 8 - iter 1782/1984 - loss 0.01771032 - time (sec): 492.85 - samples/sec: 298.27 - lr: 0.000035 - momentum: 0.000000
2023-10-12 18:40:16,256 epoch 8 - iter 1980/1984 - loss 0.01950296 - time (sec): 545.14 - samples/sec: 299.99 - lr: 0.000033 - momentum: 0.000000
2023-10-12 18:40:17,576 ----------------------------------------------------------------------------------------------------
2023-10-12 18:40:17,577 EPOCH 8 done: loss 0.0195 - lr: 0.000033
2023-10-12 18:40:48,348 DEV : loss 0.20685595273971558 - f1-score (micro avg)  0.7506
2023-10-12 18:40:48,388 ----------------------------------------------------------------------------------------------------
2023-10-12 18:41:43,210 epoch 9 - iter 198/1984 - loss 0.01469186 - time (sec): 54.82 - samples/sec: 297.92 - lr: 0.000032 - momentum: 0.000000
2023-10-12 18:42:34,820 epoch 9 - iter 396/1984 - loss 0.01231871 - time (sec): 106.43 - samples/sec: 307.79 - lr: 0.000030 - momentum: 0.000000
2023-10-12 18:43:28,721 epoch 9 - iter 594/1984 - loss 0.01418213 - time (sec): 160.33 - samples/sec: 308.89 - lr: 0.000028 - momentum: 0.000000
2023-10-12 18:44:21,248 epoch 9 - iter 792/1984 - loss 0.01449414 - time (sec): 212.86 - samples/sec: 309.93 - lr: 0.000027 - momentum: 0.000000
2023-10-12 18:45:15,929 epoch 9 - iter 990/1984 - loss 0.01310674 - time (sec): 267.54 - samples/sec: 311.53 - lr: 0.000025 - momentum: 0.000000
2023-10-12 18:46:08,149 epoch 9 - iter 1188/1984 - loss 0.01385134 - time (sec): 319.76 - samples/sec: 312.20 - lr: 0.000023 - momentum: 0.000000
2023-10-12 18:46:58,627 epoch 9 - iter 1386/1984 - loss 0.01328832 - time (sec): 370.24 - samples/sec: 313.82 - lr: 0.000022 - momentum: 0.000000
2023-10-12 18:47:51,195 epoch 9 - iter 1584/1984 - loss 0.01329775 - time (sec): 422.80 - samples/sec: 313.30 - lr: 0.000020 - momentum: 0.000000
2023-10-12 18:48:46,351 epoch 9 - iter 1782/1984 - loss 0.01366045 - time (sec): 477.96 - samples/sec: 309.53 - lr: 0.000018 - momentum: 0.000000
2023-10-12 18:49:40,513 epoch 9 - iter 1980/1984 - loss 0.01397599 - time (sec): 532.12 - samples/sec: 307.31 - lr: 0.000017 - momentum: 0.000000
2023-10-12 18:49:41,587 ----------------------------------------------------------------------------------------------------
2023-10-12 18:49:41,588 EPOCH 9 done: loss 0.0140 - lr: 0.000017
2023-10-12 18:50:07,293 DEV : loss 0.2238703966140747 - f1-score (micro avg)  0.7411
2023-10-12 18:50:07,343 ----------------------------------------------------------------------------------------------------
2023-10-12 18:51:01,512 epoch 10 - iter 198/1984 - loss 0.01050438 - time (sec): 54.17 - samples/sec: 309.79 - lr: 0.000015 - momentum: 0.000000
2023-10-12 18:51:53,307 epoch 10 - iter 396/1984 - loss 0.00772763 - time (sec): 105.96 - samples/sec: 305.80 - lr: 0.000013 - momentum: 0.000000
2023-10-12 18:52:48,019 epoch 10 - iter 594/1984 - loss 0.01012820 - time (sec): 160.67 - samples/sec: 299.59 - lr: 0.000012 - momentum: 0.000000
2023-10-12 18:53:41,519 epoch 10 - iter 792/1984 - loss 0.00947119 - time (sec): 214.17 - samples/sec: 301.96 - lr: 0.000010 - momentum: 0.000000
2023-10-12 18:54:40,509 epoch 10 - iter 990/1984 - loss 0.01022609 - time (sec): 273.16 - samples/sec: 300.88 - lr: 0.000008 - momentum: 0.000000
2023-10-12 18:55:34,282 epoch 10 - iter 1188/1984 - loss 0.00989781 - time (sec): 326.94 - samples/sec: 302.53 - lr: 0.000007 - momentum: 0.000000
2023-10-12 18:56:29,254 epoch 10 - iter 1386/1984 - loss 0.00983913 - time (sec): 381.91 - samples/sec: 300.51 - lr: 0.000005 - momentum: 0.000000
2023-10-12 18:57:21,637 epoch 10 - iter 1584/1984 - loss 0.01002305 - time (sec): 434.29 - samples/sec: 301.31 - lr: 0.000003 - momentum: 0.000000
2023-10-12 18:58:16,687 epoch 10 - iter 1782/1984 - loss 0.00997923 - time (sec): 489.34 - samples/sec: 301.28 - lr: 0.000002 - momentum: 0.000000
2023-10-12 18:59:09,635 epoch 10 - iter 1980/1984 - loss 0.01053401 - time (sec): 542.29 - samples/sec: 301.94 - lr: 0.000000 - momentum: 0.000000
2023-10-12 18:59:10,685 ----------------------------------------------------------------------------------------------------
2023-10-12 18:59:10,685 EPOCH 10 done: loss 0.0105 - lr: 0.000000
2023-10-12 18:59:40,730 DEV : loss 0.22921979427337646 - f1-score (micro avg)  0.7538
2023-10-12 18:59:41,817 ----------------------------------------------------------------------------------------------------
2023-10-12 18:59:41,819 Loading model from best epoch ...
2023-10-12 18:59:46,867 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-12 19:00:16,825 
Results:
- F-score (micro) 0.763
- F-score (macro) 0.6832
- Accuracy 0.6361

By class:
              precision    recall  f1-score   support

         LOC     0.7887    0.8489    0.8176       655
         PER     0.7465    0.7265    0.7364       223
         ORG     0.5421    0.4567    0.4957       127

   micro avg     0.7541    0.7721    0.7630      1005
   macro avg     0.6924    0.6773    0.6832      1005
weighted avg     0.7481    0.7721    0.7589      1005

2023-10-12 19:00:16,826 ----------------------------------------------------------------------------------------------------