Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697033130.c8b2203b18a8.1914.0 +3 -0
- test.tsv +0 -0
- training.log +262 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8840803db8c3518413c5da3ce77f3480d0ca6c63eac496a64fc959aed829303
|
3 |
+
size 870793839
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3612c9264c3b0cdc3d5f14e9394974ea2b779f06bf7a05fd41e901835b755c1e
|
3 |
+
size 870793956
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 14:12:23 0.0001 1.1808 0.2482 0.0000 0.0000 0.0000 0.0000
|
3 |
+
2 14:19:26 0.0001 0.1366 0.1194 0.7333 0.7500 0.7416 0.6153
|
4 |
+
3 14:26:39 0.0001 0.0810 0.0933 0.8440 0.7324 0.7843 0.6547
|
5 |
+
4 14:33:43 0.0001 0.0522 0.0754 0.8515 0.8295 0.8404 0.7401
|
6 |
+
5 14:41:04 0.0001 0.0356 0.0821 0.8588 0.8233 0.8407 0.7366
|
7 |
+
6 14:48:26 0.0001 0.0266 0.0841 0.8774 0.8647 0.8710 0.7852
|
8 |
+
7 14:55:45 0.0001 0.0225 0.0974 0.8834 0.8378 0.8600 0.7673
|
9 |
+
8 15:02:54 0.0000 0.0179 0.1137 0.8673 0.8171 0.8415 0.7399
|
10 |
+
9 15:10:26 0.0000 0.0145 0.1123 0.8687 0.8409 0.8546 0.7600
|
11 |
+
10 15:17:41 0.0000 0.0121 0.1201 0.8753 0.8264 0.8502 0.7526
|
runs/events.out.tfevents.1697033130.c8b2203b18a8.1914.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6acffe66fd4948ead9b2fc7be01c97d72e8a0277afd9188362a27e05aa6897c5
|
3 |
+
size 407048
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-11 14:05:30,951 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-11 14:05:30,953 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=13, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-11 14:05:30,953 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-11 14:05:30,954 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
72 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
73 |
+
2023-10-11 14:05:30,954 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-11 14:05:30,954 Train: 5777 sentences
|
75 |
+
2023-10-11 14:05:30,954 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-11 14:05:30,954 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-11 14:05:30,954 Training Params:
|
78 |
+
2023-10-11 14:05:30,954 - learning_rate: "0.00015"
|
79 |
+
2023-10-11 14:05:30,954 - mini_batch_size: "8"
|
80 |
+
2023-10-11 14:05:30,954 - max_epochs: "10"
|
81 |
+
2023-10-11 14:05:30,954 - shuffle: "True"
|
82 |
+
2023-10-11 14:05:30,954 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-11 14:05:30,954 Plugins:
|
84 |
+
2023-10-11 14:05:30,954 - TensorboardLogger
|
85 |
+
2023-10-11 14:05:30,954 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-11 14:05:30,955 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-11 14:05:30,955 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-11 14:05:30,955 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-11 14:05:30,955 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-11 14:05:30,955 Computation:
|
91 |
+
2023-10-11 14:05:30,955 - compute on device: cuda:0
|
92 |
+
2023-10-11 14:05:30,955 - embedding storage: none
|
93 |
+
2023-10-11 14:05:30,955 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-11 14:05:30,955 Model training base path: "hmbench-icdar/nl-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
|
95 |
+
2023-10-11 14:05:30,955 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-11 14:05:30,955 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-11 14:05:30,956 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-11 14:06:12,814 epoch 1 - iter 72/723 - loss 2.58705621 - time (sec): 41.86 - samples/sec: 420.87 - lr: 0.000015 - momentum: 0.000000
|
99 |
+
2023-10-11 14:06:55,356 epoch 1 - iter 144/723 - loss 2.55125919 - time (sec): 84.40 - samples/sec: 440.37 - lr: 0.000030 - momentum: 0.000000
|
100 |
+
2023-10-11 14:07:32,736 epoch 1 - iter 216/723 - loss 2.42208641 - time (sec): 121.78 - samples/sec: 439.68 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-10-11 14:08:11,674 epoch 1 - iter 288/723 - loss 2.21128263 - time (sec): 160.72 - samples/sec: 445.55 - lr: 0.000060 - momentum: 0.000000
|
102 |
+
2023-10-11 14:08:52,057 epoch 1 - iter 360/723 - loss 1.96849538 - time (sec): 201.10 - samples/sec: 453.32 - lr: 0.000074 - momentum: 0.000000
|
103 |
+
2023-10-11 14:09:30,023 epoch 1 - iter 432/723 - loss 1.75669262 - time (sec): 239.07 - samples/sec: 452.37 - lr: 0.000089 - momentum: 0.000000
|
104 |
+
2023-10-11 14:10:08,540 epoch 1 - iter 504/723 - loss 1.56586690 - time (sec): 277.58 - samples/sec: 452.47 - lr: 0.000104 - momentum: 0.000000
|
105 |
+
2023-10-11 14:10:46,586 epoch 1 - iter 576/723 - loss 1.41230121 - time (sec): 315.63 - samples/sec: 451.25 - lr: 0.000119 - momentum: 0.000000
|
106 |
+
2023-10-11 14:11:23,583 epoch 1 - iter 648/723 - loss 1.29317716 - time (sec): 352.63 - samples/sec: 448.46 - lr: 0.000134 - momentum: 0.000000
|
107 |
+
2023-10-11 14:12:02,646 epoch 1 - iter 720/723 - loss 1.18252757 - time (sec): 391.69 - samples/sec: 448.88 - lr: 0.000149 - momentum: 0.000000
|
108 |
+
2023-10-11 14:12:03,721 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-11 14:12:03,721 EPOCH 1 done: loss 1.1808 - lr: 0.000149
|
110 |
+
2023-10-11 14:12:23,449 DEV : loss 0.2481938898563385 - f1-score (micro avg) 0.0
|
111 |
+
2023-10-11 14:12:23,483 ----------------------------------------------------------------------------------------------------
|
112 |
+
2023-10-11 14:13:02,418 epoch 2 - iter 72/723 - loss 0.19665532 - time (sec): 38.93 - samples/sec: 463.18 - lr: 0.000148 - momentum: 0.000000
|
113 |
+
2023-10-11 14:13:43,718 epoch 2 - iter 144/723 - loss 0.17259289 - time (sec): 80.23 - samples/sec: 442.69 - lr: 0.000147 - momentum: 0.000000
|
114 |
+
2023-10-11 14:14:22,701 epoch 2 - iter 216/723 - loss 0.17115371 - time (sec): 119.22 - samples/sec: 433.56 - lr: 0.000145 - momentum: 0.000000
|
115 |
+
2023-10-11 14:15:03,146 epoch 2 - iter 288/723 - loss 0.16331197 - time (sec): 159.66 - samples/sec: 434.40 - lr: 0.000143 - momentum: 0.000000
|
116 |
+
2023-10-11 14:15:43,402 epoch 2 - iter 360/723 - loss 0.16009303 - time (sec): 199.92 - samples/sec: 437.18 - lr: 0.000142 - momentum: 0.000000
|
117 |
+
2023-10-11 14:16:23,005 epoch 2 - iter 432/723 - loss 0.15669479 - time (sec): 239.52 - samples/sec: 437.77 - lr: 0.000140 - momentum: 0.000000
|
118 |
+
2023-10-11 14:17:02,620 epoch 2 - iter 504/723 - loss 0.14903751 - time (sec): 279.14 - samples/sec: 441.76 - lr: 0.000138 - momentum: 0.000000
|
119 |
+
2023-10-11 14:17:43,533 epoch 2 - iter 576/723 - loss 0.14173836 - time (sec): 320.05 - samples/sec: 446.76 - lr: 0.000137 - momentum: 0.000000
|
120 |
+
2023-10-11 14:18:21,648 epoch 2 - iter 648/723 - loss 0.13875105 - time (sec): 358.16 - samples/sec: 444.18 - lr: 0.000135 - momentum: 0.000000
|
121 |
+
2023-10-11 14:19:03,265 epoch 2 - iter 720/723 - loss 0.13671767 - time (sec): 399.78 - samples/sec: 438.93 - lr: 0.000133 - momentum: 0.000000
|
122 |
+
2023-10-11 14:19:04,918 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-11 14:19:04,919 EPOCH 2 done: loss 0.1366 - lr: 0.000133
|
124 |
+
2023-10-11 14:19:26,427 DEV : loss 0.11942420899868011 - f1-score (micro avg) 0.7416
|
125 |
+
2023-10-11 14:19:26,458 saving best model
|
126 |
+
2023-10-11 14:19:27,827 ----------------------------------------------------------------------------------------------------
|
127 |
+
2023-10-11 14:20:12,005 epoch 3 - iter 72/723 - loss 0.08259658 - time (sec): 44.18 - samples/sec: 390.95 - lr: 0.000132 - momentum: 0.000000
|
128 |
+
2023-10-11 14:20:53,017 epoch 3 - iter 144/723 - loss 0.09033580 - time (sec): 85.19 - samples/sec: 404.11 - lr: 0.000130 - momentum: 0.000000
|
129 |
+
2023-10-11 14:21:34,442 epoch 3 - iter 216/723 - loss 0.08477045 - time (sec): 126.61 - samples/sec: 410.89 - lr: 0.000128 - momentum: 0.000000
|
130 |
+
2023-10-11 14:22:14,549 epoch 3 - iter 288/723 - loss 0.09192864 - time (sec): 166.72 - samples/sec: 411.77 - lr: 0.000127 - momentum: 0.000000
|
131 |
+
2023-10-11 14:22:55,726 epoch 3 - iter 360/723 - loss 0.08964205 - time (sec): 207.90 - samples/sec: 419.60 - lr: 0.000125 - momentum: 0.000000
|
132 |
+
2023-10-11 14:23:36,234 epoch 3 - iter 432/723 - loss 0.08993680 - time (sec): 248.40 - samples/sec: 418.75 - lr: 0.000123 - momentum: 0.000000
|
133 |
+
2023-10-11 14:24:14,710 epoch 3 - iter 504/723 - loss 0.08843282 - time (sec): 286.88 - samples/sec: 423.56 - lr: 0.000122 - momentum: 0.000000
|
134 |
+
2023-10-11 14:24:54,374 epoch 3 - iter 576/723 - loss 0.08469597 - time (sec): 326.55 - samples/sec: 427.94 - lr: 0.000120 - momentum: 0.000000
|
135 |
+
2023-10-11 14:25:33,840 epoch 3 - iter 648/723 - loss 0.08177926 - time (sec): 366.01 - samples/sec: 431.84 - lr: 0.000118 - momentum: 0.000000
|
136 |
+
2023-10-11 14:26:15,057 epoch 3 - iter 720/723 - loss 0.08098319 - time (sec): 407.23 - samples/sec: 431.32 - lr: 0.000117 - momentum: 0.000000
|
137 |
+
2023-10-11 14:26:16,272 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-11 14:26:16,272 EPOCH 3 done: loss 0.0810 - lr: 0.000117
|
139 |
+
2023-10-11 14:26:39,318 DEV : loss 0.0933394655585289 - f1-score (micro avg) 0.7843
|
140 |
+
2023-10-11 14:26:39,365 saving best model
|
141 |
+
2023-10-11 14:26:42,488 ----------------------------------------------------------------------------------------------------
|
142 |
+
2023-10-11 14:27:23,951 epoch 4 - iter 72/723 - loss 0.06794431 - time (sec): 41.46 - samples/sec: 436.19 - lr: 0.000115 - momentum: 0.000000
|
143 |
+
2023-10-11 14:28:04,485 epoch 4 - iter 144/723 - loss 0.05806820 - time (sec): 81.99 - samples/sec: 427.75 - lr: 0.000113 - momentum: 0.000000
|
144 |
+
2023-10-11 14:28:44,946 epoch 4 - iter 216/723 - loss 0.05532765 - time (sec): 122.45 - samples/sec: 431.87 - lr: 0.000112 - momentum: 0.000000
|
145 |
+
2023-10-11 14:29:25,877 epoch 4 - iter 288/723 - loss 0.05495337 - time (sec): 163.38 - samples/sec: 430.00 - lr: 0.000110 - momentum: 0.000000
|
146 |
+
2023-10-11 14:30:06,043 epoch 4 - iter 360/723 - loss 0.05464785 - time (sec): 203.55 - samples/sec: 428.59 - lr: 0.000108 - momentum: 0.000000
|
147 |
+
2023-10-11 14:30:43,057 epoch 4 - iter 432/723 - loss 0.05467701 - time (sec): 240.56 - samples/sec: 431.40 - lr: 0.000107 - momentum: 0.000000
|
148 |
+
2023-10-11 14:31:22,681 epoch 4 - iter 504/723 - loss 0.05477446 - time (sec): 280.19 - samples/sec: 431.78 - lr: 0.000105 - momentum: 0.000000
|
149 |
+
2023-10-11 14:32:04,286 epoch 4 - iter 576/723 - loss 0.05566990 - time (sec): 321.79 - samples/sec: 432.98 - lr: 0.000103 - momentum: 0.000000
|
150 |
+
2023-10-11 14:32:42,989 epoch 4 - iter 648/723 - loss 0.05417209 - time (sec): 360.49 - samples/sec: 436.05 - lr: 0.000102 - momentum: 0.000000
|
151 |
+
2023-10-11 14:33:21,891 epoch 4 - iter 720/723 - loss 0.05222244 - time (sec): 399.40 - samples/sec: 440.11 - lr: 0.000100 - momentum: 0.000000
|
152 |
+
2023-10-11 14:33:22,951 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-11 14:33:22,952 EPOCH 4 done: loss 0.0522 - lr: 0.000100
|
154 |
+
2023-10-11 14:33:43,757 DEV : loss 0.0753728598356247 - f1-score (micro avg) 0.8404
|
155 |
+
2023-10-11 14:33:43,792 saving best model
|
156 |
+
2023-10-11 14:33:46,481 ----------------------------------------------------------------------------------------------------
|
157 |
+
2023-10-11 14:34:26,467 epoch 5 - iter 72/723 - loss 0.02836811 - time (sec): 39.98 - samples/sec: 446.76 - lr: 0.000098 - momentum: 0.000000
|
158 |
+
2023-10-11 14:35:04,451 epoch 5 - iter 144/723 - loss 0.03014743 - time (sec): 77.96 - samples/sec: 443.42 - lr: 0.000097 - momentum: 0.000000
|
159 |
+
2023-10-11 14:35:43,263 epoch 5 - iter 216/723 - loss 0.03649224 - time (sec): 116.77 - samples/sec: 439.91 - lr: 0.000095 - momentum: 0.000000
|
160 |
+
2023-10-11 14:36:24,885 epoch 5 - iter 288/723 - loss 0.03442032 - time (sec): 158.40 - samples/sec: 436.97 - lr: 0.000093 - momentum: 0.000000
|
161 |
+
2023-10-11 14:37:11,469 epoch 5 - iter 360/723 - loss 0.03751789 - time (sec): 204.98 - samples/sec: 428.52 - lr: 0.000092 - momentum: 0.000000
|
162 |
+
2023-10-11 14:37:56,871 epoch 5 - iter 432/723 - loss 0.03539090 - time (sec): 250.38 - samples/sec: 416.37 - lr: 0.000090 - momentum: 0.000000
|
163 |
+
2023-10-11 14:38:39,139 epoch 5 - iter 504/723 - loss 0.03487207 - time (sec): 292.65 - samples/sec: 416.32 - lr: 0.000088 - momentum: 0.000000
|
164 |
+
2023-10-11 14:39:21,228 epoch 5 - iter 576/723 - loss 0.03534212 - time (sec): 334.74 - samples/sec: 420.39 - lr: 0.000087 - momentum: 0.000000
|
165 |
+
2023-10-11 14:40:01,428 epoch 5 - iter 648/723 - loss 0.03542313 - time (sec): 374.94 - samples/sec: 420.10 - lr: 0.000085 - momentum: 0.000000
|
166 |
+
2023-10-11 14:40:41,071 epoch 5 - iter 720/723 - loss 0.03559847 - time (sec): 414.58 - samples/sec: 423.82 - lr: 0.000083 - momentum: 0.000000
|
167 |
+
2023-10-11 14:40:42,254 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-11 14:40:42,254 EPOCH 5 done: loss 0.0356 - lr: 0.000083
|
169 |
+
2023-10-11 14:41:04,297 DEV : loss 0.08206792920827866 - f1-score (micro avg) 0.8407
|
170 |
+
2023-10-11 14:41:04,332 saving best model
|
171 |
+
2023-10-11 14:41:06,999 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-11 14:41:44,849 epoch 6 - iter 72/723 - loss 0.02906877 - time (sec): 37.84 - samples/sec: 444.50 - lr: 0.000082 - momentum: 0.000000
|
173 |
+
2023-10-11 14:42:25,331 epoch 6 - iter 144/723 - loss 0.02818642 - time (sec): 78.32 - samples/sec: 434.40 - lr: 0.000080 - momentum: 0.000000
|
174 |
+
2023-10-11 14:43:06,681 epoch 6 - iter 216/723 - loss 0.02990584 - time (sec): 119.67 - samples/sec: 433.58 - lr: 0.000078 - momentum: 0.000000
|
175 |
+
2023-10-11 14:43:47,544 epoch 6 - iter 288/723 - loss 0.02714357 - time (sec): 160.53 - samples/sec: 436.14 - lr: 0.000077 - momentum: 0.000000
|
176 |
+
2023-10-11 14:44:29,330 epoch 6 - iter 360/723 - loss 0.02747624 - time (sec): 202.32 - samples/sec: 436.90 - lr: 0.000075 - momentum: 0.000000
|
177 |
+
2023-10-11 14:45:10,018 epoch 6 - iter 432/723 - loss 0.02687441 - time (sec): 243.01 - samples/sec: 433.75 - lr: 0.000073 - momentum: 0.000000
|
178 |
+
2023-10-11 14:45:52,721 epoch 6 - iter 504/723 - loss 0.02594408 - time (sec): 285.71 - samples/sec: 427.66 - lr: 0.000072 - momentum: 0.000000
|
179 |
+
2023-10-11 14:46:37,946 epoch 6 - iter 576/723 - loss 0.02542891 - time (sec): 330.94 - samples/sec: 422.42 - lr: 0.000070 - momentum: 0.000000
|
180 |
+
2023-10-11 14:47:23,370 epoch 6 - iter 648/723 - loss 0.02627547 - time (sec): 376.36 - samples/sec: 423.51 - lr: 0.000068 - momentum: 0.000000
|
181 |
+
2023-10-11 14:48:05,278 epoch 6 - iter 720/723 - loss 0.02645835 - time (sec): 418.27 - samples/sec: 420.22 - lr: 0.000067 - momentum: 0.000000
|
182 |
+
2023-10-11 14:48:06,364 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-11 14:48:06,364 EPOCH 6 done: loss 0.0266 - lr: 0.000067
|
184 |
+
2023-10-11 14:48:26,664 DEV : loss 0.08414550870656967 - f1-score (micro avg) 0.871
|
185 |
+
2023-10-11 14:48:26,696 saving best model
|
186 |
+
2023-10-11 14:48:29,329 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-11 14:49:10,549 epoch 7 - iter 72/723 - loss 0.02559871 - time (sec): 41.22 - samples/sec: 434.37 - lr: 0.000065 - momentum: 0.000000
|
188 |
+
2023-10-11 14:49:50,528 epoch 7 - iter 144/723 - loss 0.02202443 - time (sec): 81.19 - samples/sec: 429.79 - lr: 0.000063 - momentum: 0.000000
|
189 |
+
2023-10-11 14:50:33,114 epoch 7 - iter 216/723 - loss 0.01970189 - time (sec): 123.78 - samples/sec: 418.63 - lr: 0.000062 - momentum: 0.000000
|
190 |
+
2023-10-11 14:51:15,905 epoch 7 - iter 288/723 - loss 0.02107156 - time (sec): 166.57 - samples/sec: 413.39 - lr: 0.000060 - momentum: 0.000000
|
191 |
+
2023-10-11 14:51:59,500 epoch 7 - iter 360/723 - loss 0.02138550 - time (sec): 210.17 - samples/sec: 411.59 - lr: 0.000058 - momentum: 0.000000
|
192 |
+
2023-10-11 14:52:41,711 epoch 7 - iter 432/723 - loss 0.02195180 - time (sec): 252.38 - samples/sec: 413.71 - lr: 0.000057 - momentum: 0.000000
|
193 |
+
2023-10-11 14:53:22,689 epoch 7 - iter 504/723 - loss 0.02270591 - time (sec): 293.36 - samples/sec: 417.57 - lr: 0.000055 - momentum: 0.000000
|
194 |
+
2023-10-11 14:54:02,112 epoch 7 - iter 576/723 - loss 0.02192802 - time (sec): 332.78 - samples/sec: 420.35 - lr: 0.000053 - momentum: 0.000000
|
195 |
+
2023-10-11 14:54:41,762 epoch 7 - iter 648/723 - loss 0.02326251 - time (sec): 372.43 - samples/sec: 422.01 - lr: 0.000052 - momentum: 0.000000
|
196 |
+
2023-10-11 14:55:21,919 epoch 7 - iter 720/723 - loss 0.02251924 - time (sec): 412.59 - samples/sec: 425.38 - lr: 0.000050 - momentum: 0.000000
|
197 |
+
2023-10-11 14:55:23,238 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-11 14:55:23,239 EPOCH 7 done: loss 0.0225 - lr: 0.000050
|
199 |
+
2023-10-11 14:55:45,123 DEV : loss 0.09741368144750595 - f1-score (micro avg) 0.86
|
200 |
+
2023-10-11 14:55:45,161 ----------------------------------------------------------------------------------------------------
|
201 |
+
2023-10-11 14:56:25,043 epoch 8 - iter 72/723 - loss 0.01566425 - time (sec): 39.88 - samples/sec: 470.64 - lr: 0.000048 - momentum: 0.000000
|
202 |
+
2023-10-11 14:57:03,296 epoch 8 - iter 144/723 - loss 0.01425224 - time (sec): 78.13 - samples/sec: 460.33 - lr: 0.000047 - momentum: 0.000000
|
203 |
+
2023-10-11 14:57:41,996 epoch 8 - iter 216/723 - loss 0.01421036 - time (sec): 116.83 - samples/sec: 454.02 - lr: 0.000045 - momentum: 0.000000
|
204 |
+
2023-10-11 14:58:20,720 epoch 8 - iter 288/723 - loss 0.01334895 - time (sec): 155.56 - samples/sec: 449.16 - lr: 0.000043 - momentum: 0.000000
|
205 |
+
2023-10-11 14:59:01,048 epoch 8 - iter 360/723 - loss 0.01534408 - time (sec): 195.89 - samples/sec: 448.40 - lr: 0.000042 - momentum: 0.000000
|
206 |
+
2023-10-11 14:59:42,233 epoch 8 - iter 432/723 - loss 0.01520775 - time (sec): 237.07 - samples/sec: 447.96 - lr: 0.000040 - momentum: 0.000000
|
207 |
+
2023-10-11 15:00:22,379 epoch 8 - iter 504/723 - loss 0.01628644 - time (sec): 277.22 - samples/sec: 447.92 - lr: 0.000038 - momentum: 0.000000
|
208 |
+
2023-10-11 15:01:03,684 epoch 8 - iter 576/723 - loss 0.01780027 - time (sec): 318.52 - samples/sec: 447.22 - lr: 0.000037 - momentum: 0.000000
|
209 |
+
2023-10-11 15:01:46,996 epoch 8 - iter 648/723 - loss 0.01751548 - time (sec): 361.83 - samples/sec: 437.74 - lr: 0.000035 - momentum: 0.000000
|
210 |
+
2023-10-11 15:02:30,881 epoch 8 - iter 720/723 - loss 0.01788380 - time (sec): 405.72 - samples/sec: 432.99 - lr: 0.000033 - momentum: 0.000000
|
211 |
+
2023-10-11 15:02:32,251 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-11 15:02:32,251 EPOCH 8 done: loss 0.0179 - lr: 0.000033
|
213 |
+
2023-10-11 15:02:54,685 DEV : loss 0.11365482956171036 - f1-score (micro avg) 0.8415
|
214 |
+
2023-10-11 15:02:54,716 ----------------------------------------------------------------------------------------------------
|
215 |
+
2023-10-11 15:03:41,064 epoch 9 - iter 72/723 - loss 0.02258103 - time (sec): 46.35 - samples/sec: 404.98 - lr: 0.000032 - momentum: 0.000000
|
216 |
+
2023-10-11 15:04:22,261 epoch 9 - iter 144/723 - loss 0.01587706 - time (sec): 87.54 - samples/sec: 402.96 - lr: 0.000030 - momentum: 0.000000
|
217 |
+
2023-10-11 15:05:06,366 epoch 9 - iter 216/723 - loss 0.01536952 - time (sec): 131.65 - samples/sec: 409.42 - lr: 0.000028 - momentum: 0.000000
|
218 |
+
2023-10-11 15:05:51,100 epoch 9 - iter 288/723 - loss 0.01464115 - time (sec): 176.38 - samples/sec: 404.84 - lr: 0.000027 - momentum: 0.000000
|
219 |
+
2023-10-11 15:06:36,197 epoch 9 - iter 360/723 - loss 0.01451980 - time (sec): 221.48 - samples/sec: 400.55 - lr: 0.000025 - momentum: 0.000000
|
220 |
+
2023-10-11 15:07:21,999 epoch 9 - iter 432/723 - loss 0.01468506 - time (sec): 267.28 - samples/sec: 397.94 - lr: 0.000023 - momentum: 0.000000
|
221 |
+
2023-10-11 15:08:04,206 epoch 9 - iter 504/723 - loss 0.01473622 - time (sec): 309.49 - samples/sec: 403.27 - lr: 0.000022 - momentum: 0.000000
|
222 |
+
2023-10-11 15:08:45,094 epoch 9 - iter 576/723 - loss 0.01522224 - time (sec): 350.38 - samples/sec: 403.83 - lr: 0.000020 - momentum: 0.000000
|
223 |
+
2023-10-11 15:09:24,875 epoch 9 - iter 648/723 - loss 0.01442489 - time (sec): 390.16 - samples/sec: 406.21 - lr: 0.000018 - momentum: 0.000000
|
224 |
+
2023-10-11 15:10:04,792 epoch 9 - iter 720/723 - loss 0.01450651 - time (sec): 430.07 - samples/sec: 408.82 - lr: 0.000017 - momentum: 0.000000
|
225 |
+
2023-10-11 15:10:05,942 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-11 15:10:05,942 EPOCH 9 done: loss 0.0145 - lr: 0.000017
|
227 |
+
2023-10-11 15:10:26,729 DEV : loss 0.11227083206176758 - f1-score (micro avg) 0.8546
|
228 |
+
2023-10-11 15:10:26,766 ----------------------------------------------------------------------------------------------------
|
229 |
+
2023-10-11 15:11:05,747 epoch 10 - iter 72/723 - loss 0.00745596 - time (sec): 38.98 - samples/sec: 430.39 - lr: 0.000015 - momentum: 0.000000
|
230 |
+
2023-10-11 15:11:47,734 epoch 10 - iter 144/723 - loss 0.01171360 - time (sec): 80.96 - samples/sec: 435.46 - lr: 0.000013 - momentum: 0.000000
|
231 |
+
2023-10-11 15:12:31,352 epoch 10 - iter 216/723 - loss 0.01187809 - time (sec): 124.58 - samples/sec: 420.80 - lr: 0.000012 - momentum: 0.000000
|
232 |
+
2023-10-11 15:13:13,766 epoch 10 - iter 288/723 - loss 0.01086224 - time (sec): 167.00 - samples/sec: 414.49 - lr: 0.000010 - momentum: 0.000000
|
233 |
+
2023-10-11 15:13:58,505 epoch 10 - iter 360/723 - loss 0.01143704 - time (sec): 211.74 - samples/sec: 414.27 - lr: 0.000008 - momentum: 0.000000
|
234 |
+
2023-10-11 15:14:39,915 epoch 10 - iter 432/723 - loss 0.01105902 - time (sec): 253.15 - samples/sec: 418.84 - lr: 0.000007 - momentum: 0.000000
|
235 |
+
2023-10-11 15:15:20,796 epoch 10 - iter 504/723 - loss 0.01259970 - time (sec): 294.03 - samples/sec: 422.08 - lr: 0.000005 - momentum: 0.000000
|
236 |
+
2023-10-11 15:16:00,222 epoch 10 - iter 576/723 - loss 0.01185845 - time (sec): 333.45 - samples/sec: 422.00 - lr: 0.000003 - momentum: 0.000000
|
237 |
+
2023-10-11 15:16:40,161 epoch 10 - iter 648/723 - loss 0.01209669 - time (sec): 373.39 - samples/sec: 424.20 - lr: 0.000002 - momentum: 0.000000
|
238 |
+
2023-10-11 15:17:19,030 epoch 10 - iter 720/723 - loss 0.01209148 - time (sec): 412.26 - samples/sec: 425.91 - lr: 0.000000 - momentum: 0.000000
|
239 |
+
2023-10-11 15:17:20,270 ----------------------------------------------------------------------------------------------------
|
240 |
+
2023-10-11 15:17:20,270 EPOCH 10 done: loss 0.0121 - lr: 0.000000
|
241 |
+
2023-10-11 15:17:41,620 DEV : loss 0.12011167407035828 - f1-score (micro avg) 0.8502
|
242 |
+
2023-10-11 15:17:42,629 ----------------------------------------------------------------------------------------------------
|
243 |
+
2023-10-11 15:17:42,632 Loading model from best epoch ...
|
244 |
+
2023-10-11 15:17:48,592 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
245 |
+
2023-10-11 15:18:08,765
|
246 |
+
Results:
|
247 |
+
- F-score (micro) 0.8516
|
248 |
+
- F-score (macro) 0.7648
|
249 |
+
- Accuracy 0.7513
|
250 |
+
|
251 |
+
By class:
|
252 |
+
precision recall f1-score support
|
253 |
+
|
254 |
+
PER 0.8173 0.8817 0.8483 482
|
255 |
+
LOC 0.9240 0.8755 0.8991 458
|
256 |
+
ORG 0.5932 0.5072 0.5469 69
|
257 |
+
|
258 |
+
micro avg 0.8500 0.8533 0.8516 1009
|
259 |
+
macro avg 0.7782 0.7548 0.7648 1009
|
260 |
+
weighted avg 0.8504 0.8533 0.8507 1009
|
261 |
+
|
262 |
+
2023-10-11 15:18:08,765 ----------------------------------------------------------------------------------------------------
|