Upload ./training.log with huggingface_hub
Browse files- training.log +239 -0
training.log
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 19:56:58,111 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 19:56:58,112 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 19:56:58,112 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
53 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 19:56:58,112 Train: 20847 sentences
|
55 |
+
2023-10-25 19:56:58,112 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 19:56:58,112 Training Params:
|
58 |
+
2023-10-25 19:56:58,112 - learning_rate: "5e-05"
|
59 |
+
2023-10-25 19:56:58,112 - mini_batch_size: "4"
|
60 |
+
2023-10-25 19:56:58,112 - max_epochs: "10"
|
61 |
+
2023-10-25 19:56:58,112 - shuffle: "True"
|
62 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 19:56:58,112 Plugins:
|
64 |
+
2023-10-25 19:56:58,112 - TensorboardLogger
|
65 |
+
2023-10-25 19:56:58,112 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 19:56:58,112 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 19:56:58,112 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 19:56:58,112 Computation:
|
71 |
+
2023-10-25 19:56:58,112 - compute on device: cuda:0
|
72 |
+
2023-10-25 19:56:58,112 - embedding storage: none
|
73 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 19:56:58,112 Model training base path: "hmbench-newseye/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
75 |
+
2023-10-25 19:56:58,112 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 19:56:58,113 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 19:56:58,113 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 19:57:20,386 epoch 1 - iter 521/5212 - loss 1.08348570 - time (sec): 22.27 - samples/sec: 1626.00 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-25 19:57:42,372 epoch 1 - iter 1042/5212 - loss 0.70758840 - time (sec): 44.26 - samples/sec: 1663.56 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-25 19:58:04,781 epoch 1 - iter 1563/5212 - loss 0.55092863 - time (sec): 66.67 - samples/sec: 1681.34 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-25 19:58:26,646 epoch 1 - iter 2084/5212 - loss 0.47203657 - time (sec): 88.53 - samples/sec: 1679.64 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-25 19:58:48,297 epoch 1 - iter 2605/5212 - loss 0.42902220 - time (sec): 110.18 - samples/sec: 1665.66 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-25 19:59:10,349 epoch 1 - iter 3126/5212 - loss 0.39940587 - time (sec): 132.24 - samples/sec: 1653.17 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-25 19:59:32,713 epoch 1 - iter 3647/5212 - loss 0.37156643 - time (sec): 154.60 - samples/sec: 1673.93 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-25 19:59:54,575 epoch 1 - iter 4168/5212 - loss 0.34705201 - time (sec): 176.46 - samples/sec: 1679.91 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-25 20:00:16,906 epoch 1 - iter 4689/5212 - loss 0.33147071 - time (sec): 198.79 - samples/sec: 1670.29 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-25 20:00:39,372 epoch 1 - iter 5210/5212 - loss 0.32226811 - time (sec): 221.26 - samples/sec: 1659.98 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-25 20:00:39,451 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 20:00:39,451 EPOCH 1 done: loss 0.3222 - lr: 0.000050
|
90 |
+
2023-10-25 20:00:43,129 DEV : loss 0.11420618742704391 - f1-score (micro avg) 0.2931
|
91 |
+
2023-10-25 20:00:43,155 saving best model
|
92 |
+
2023-10-25 20:00:43,631 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 20:01:05,416 epoch 2 - iter 521/5212 - loss 0.18552954 - time (sec): 21.78 - samples/sec: 1681.53 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-25 20:01:27,647 epoch 2 - iter 1042/5212 - loss 0.17954476 - time (sec): 44.01 - samples/sec: 1655.99 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-25 20:01:49,727 epoch 2 - iter 1563/5212 - loss 0.18022652 - time (sec): 66.09 - samples/sec: 1672.98 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-25 20:02:11,870 epoch 2 - iter 2084/5212 - loss 0.18252575 - time (sec): 88.24 - samples/sec: 1672.56 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-25 20:02:34,162 epoch 2 - iter 2605/5212 - loss 0.18537995 - time (sec): 110.53 - samples/sec: 1660.49 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-25 20:02:56,495 epoch 2 - iter 3126/5212 - loss 0.18574013 - time (sec): 132.86 - samples/sec: 1670.44 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-25 20:03:18,676 epoch 2 - iter 3647/5212 - loss 0.21371016 - time (sec): 155.04 - samples/sec: 1663.40 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-25 20:03:40,512 epoch 2 - iter 4168/5212 - loss 0.22735133 - time (sec): 176.88 - samples/sec: 1654.56 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-25 20:04:02,042 epoch 2 - iter 4689/5212 - loss 0.26232838 - time (sec): 198.41 - samples/sec: 1658.91 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-25 20:04:23,713 epoch 2 - iter 5210/5212 - loss 0.29428995 - time (sec): 220.08 - samples/sec: 1669.05 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-25 20:04:23,796 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 20:04:23,796 EPOCH 2 done: loss 0.2942 - lr: 0.000044
|
105 |
+
2023-10-25 20:04:30,604 DEV : loss 0.21574755012989044 - f1-score (micro avg) 0.0
|
106 |
+
2023-10-25 20:04:30,629 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-25 20:04:52,387 epoch 3 - iter 521/5212 - loss 0.61023887 - time (sec): 21.76 - samples/sec: 1676.40 - lr: 0.000044 - momentum: 0.000000
|
108 |
+
2023-10-25 20:05:14,600 epoch 3 - iter 1042/5212 - loss 0.56119949 - time (sec): 43.97 - samples/sec: 1730.25 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-25 20:05:36,372 epoch 3 - iter 1563/5212 - loss 0.56421056 - time (sec): 65.74 - samples/sec: 1717.45 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-25 20:05:58,622 epoch 3 - iter 2084/5212 - loss 0.57799536 - time (sec): 87.99 - samples/sec: 1690.37 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-25 20:06:20,339 epoch 3 - iter 2605/5212 - loss 0.57725572 - time (sec): 109.71 - samples/sec: 1690.27 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-25 20:06:42,574 epoch 3 - iter 3126/5212 - loss 0.57924881 - time (sec): 131.94 - samples/sec: 1666.46 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-25 20:07:04,690 epoch 3 - iter 3647/5212 - loss 0.58468851 - time (sec): 154.06 - samples/sec: 1662.21 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-25 20:07:27,168 epoch 3 - iter 4168/5212 - loss 0.58359992 - time (sec): 176.54 - samples/sec: 1672.35 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2023-10-25 20:07:48,934 epoch 3 - iter 4689/5212 - loss 0.58385727 - time (sec): 198.30 - samples/sec: 1661.25 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-25 20:08:10,931 epoch 3 - iter 5210/5212 - loss 0.57967064 - time (sec): 220.30 - samples/sec: 1667.45 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-25 20:08:11,008 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-25 20:08:11,008 EPOCH 3 done: loss 0.5798 - lr: 0.000039
|
119 |
+
2023-10-25 20:08:17,809 DEV : loss 0.22797180712223053 - f1-score (micro avg) 0.0
|
120 |
+
2023-10-25 20:08:17,834 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-25 20:08:39,704 epoch 4 - iter 521/5212 - loss 0.53509142 - time (sec): 21.87 - samples/sec: 1670.95 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-25 20:09:01,224 epoch 4 - iter 1042/5212 - loss 0.57089598 - time (sec): 43.39 - samples/sec: 1769.02 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-25 20:09:23,217 epoch 4 - iter 1563/5212 - loss 0.56098897 - time (sec): 65.38 - samples/sec: 1736.26 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-25 20:09:45,468 epoch 4 - iter 2084/5212 - loss 0.56792280 - time (sec): 87.63 - samples/sec: 1733.55 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-25 20:10:07,654 epoch 4 - iter 2605/5212 - loss 0.55856576 - time (sec): 109.82 - samples/sec: 1732.46 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-25 20:10:29,680 epoch 4 - iter 3126/5212 - loss 0.55882546 - time (sec): 131.84 - samples/sec: 1704.50 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-25 20:10:51,853 epoch 4 - iter 3647/5212 - loss 0.56106127 - time (sec): 154.02 - samples/sec: 1706.01 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-25 20:11:13,676 epoch 4 - iter 4168/5212 - loss 0.55614039 - time (sec): 175.84 - samples/sec: 1698.08 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-25 20:11:35,559 epoch 4 - iter 4689/5212 - loss 0.55568875 - time (sec): 197.72 - samples/sec: 1687.66 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-25 20:11:57,314 epoch 4 - iter 5210/5212 - loss 0.56143141 - time (sec): 219.48 - samples/sec: 1673.89 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-25 20:11:57,394 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-25 20:11:57,394 EPOCH 4 done: loss 0.5614 - lr: 0.000033
|
133 |
+
2023-10-25 20:12:04,213 DEV : loss 0.22103846073150635 - f1-score (micro avg) 0.0
|
134 |
+
2023-10-25 20:12:04,238 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-25 20:12:26,199 epoch 5 - iter 521/5212 - loss 0.59690938 - time (sec): 21.96 - samples/sec: 1651.61 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-25 20:12:47,893 epoch 5 - iter 1042/5212 - loss 0.57083926 - time (sec): 43.65 - samples/sec: 1634.39 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-25 20:13:09,967 epoch 5 - iter 1563/5212 - loss 0.55181100 - time (sec): 65.73 - samples/sec: 1668.56 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-25 20:13:32,378 epoch 5 - iter 2084/5212 - loss 0.55381084 - time (sec): 88.14 - samples/sec: 1674.65 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-25 20:13:54,700 epoch 5 - iter 2605/5212 - loss 0.55370422 - time (sec): 110.46 - samples/sec: 1669.48 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-25 20:14:16,931 epoch 5 - iter 3126/5212 - loss 0.55580912 - time (sec): 132.69 - samples/sec: 1670.75 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-25 20:14:39,010 epoch 5 - iter 3647/5212 - loss 0.55361204 - time (sec): 154.77 - samples/sec: 1648.30 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-25 20:15:01,019 epoch 5 - iter 4168/5212 - loss 0.55662199 - time (sec): 176.78 - samples/sec: 1657.09 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-25 20:15:23,088 epoch 5 - iter 4689/5212 - loss 0.54917164 - time (sec): 198.85 - samples/sec: 1654.63 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-25 20:15:45,019 epoch 5 - iter 5210/5212 - loss 0.54696535 - time (sec): 220.78 - samples/sec: 1664.02 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-25 20:15:45,098 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-25 20:15:45,098 EPOCH 5 done: loss 0.5469 - lr: 0.000028
|
147 |
+
2023-10-25 20:15:51,857 DEV : loss 0.2455786168575287 - f1-score (micro avg) 0.0
|
148 |
+
2023-10-25 20:15:51,883 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-25 20:16:14,379 epoch 6 - iter 521/5212 - loss 0.57254029 - time (sec): 22.49 - samples/sec: 1691.82 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-25 20:16:36,220 epoch 6 - iter 1042/5212 - loss 0.52755461 - time (sec): 44.34 - samples/sec: 1655.77 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-25 20:16:58,010 epoch 6 - iter 1563/5212 - loss 0.53602606 - time (sec): 66.13 - samples/sec: 1643.95 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-25 20:17:20,136 epoch 6 - iter 2084/5212 - loss 0.53959820 - time (sec): 88.25 - samples/sec: 1666.58 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-25 20:17:41,835 epoch 6 - iter 2605/5212 - loss 0.54382641 - time (sec): 109.95 - samples/sec: 1658.66 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-25 20:18:04,025 epoch 6 - iter 3126/5212 - loss 0.54769962 - time (sec): 132.14 - samples/sec: 1669.15 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-25 20:18:25,736 epoch 6 - iter 3647/5212 - loss 0.54874941 - time (sec): 153.85 - samples/sec: 1658.88 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-25 20:18:47,563 epoch 6 - iter 4168/5212 - loss 0.54164387 - time (sec): 175.68 - samples/sec: 1663.19 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-25 20:19:09,794 epoch 6 - iter 4689/5212 - loss 0.53460429 - time (sec): 197.91 - samples/sec: 1668.66 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-25 20:19:32,171 epoch 6 - iter 5210/5212 - loss 0.53273458 - time (sec): 220.29 - samples/sec: 1667.76 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-25 20:19:32,256 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-25 20:19:32,256 EPOCH 6 done: loss 0.5327 - lr: 0.000022
|
161 |
+
2023-10-25 20:19:39,076 DEV : loss 0.24423913657665253 - f1-score (micro avg) 0.0
|
162 |
+
2023-10-25 20:19:39,103 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-25 20:20:01,010 epoch 7 - iter 521/5212 - loss 0.52293661 - time (sec): 21.91 - samples/sec: 1654.87 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-25 20:20:22,981 epoch 7 - iter 1042/5212 - loss 0.55864614 - time (sec): 43.88 - samples/sec: 1685.68 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-25 20:20:44,977 epoch 7 - iter 1563/5212 - loss 0.54801286 - time (sec): 65.87 - samples/sec: 1687.51 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-25 20:21:07,465 epoch 7 - iter 2084/5212 - loss 0.52281712 - time (sec): 88.36 - samples/sec: 1697.53 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-25 20:21:29,412 epoch 7 - iter 2605/5212 - loss 0.52541212 - time (sec): 110.31 - samples/sec: 1686.47 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-25 20:21:50,941 epoch 7 - iter 3126/5212 - loss 0.52460589 - time (sec): 131.84 - samples/sec: 1702.56 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-25 20:22:12,842 epoch 7 - iter 3647/5212 - loss 0.52696389 - time (sec): 153.74 - samples/sec: 1706.10 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-25 20:22:34,666 epoch 7 - iter 4168/5212 - loss 0.52978826 - time (sec): 175.56 - samples/sec: 1703.61 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-25 20:22:56,241 epoch 7 - iter 4689/5212 - loss 0.53279906 - time (sec): 197.14 - samples/sec: 1687.62 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-25 20:23:18,267 epoch 7 - iter 5210/5212 - loss 0.53320841 - time (sec): 219.16 - samples/sec: 1676.23 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-25 20:23:18,343 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-25 20:23:18,343 EPOCH 7 done: loss 0.5332 - lr: 0.000017
|
175 |
+
2023-10-25 20:23:24,491 DEV : loss 0.24582862854003906 - f1-score (micro avg) 0.0
|
176 |
+
2023-10-25 20:23:24,518 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-25 20:23:46,181 epoch 8 - iter 521/5212 - loss 0.51997984 - time (sec): 21.66 - samples/sec: 1675.53 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-25 20:24:08,717 epoch 8 - iter 1042/5212 - loss 0.50827131 - time (sec): 44.20 - samples/sec: 1632.62 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-25 20:24:30,464 epoch 8 - iter 1563/5212 - loss 0.52442736 - time (sec): 65.94 - samples/sec: 1655.07 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-25 20:24:52,677 epoch 8 - iter 2084/5212 - loss 0.53205725 - time (sec): 88.16 - samples/sec: 1627.91 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-25 20:25:14,585 epoch 8 - iter 2605/5212 - loss 0.52219100 - time (sec): 110.06 - samples/sec: 1645.61 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-25 20:25:36,027 epoch 8 - iter 3126/5212 - loss 0.53222967 - time (sec): 131.51 - samples/sec: 1636.67 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-25 20:25:58,145 epoch 8 - iter 3647/5212 - loss 0.53929555 - time (sec): 153.63 - samples/sec: 1646.93 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-25 20:26:20,446 epoch 8 - iter 4168/5212 - loss 0.54041489 - time (sec): 175.93 - samples/sec: 1649.90 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-25 20:26:42,442 epoch 8 - iter 4689/5212 - loss 0.53637281 - time (sec): 197.92 - samples/sec: 1667.54 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-25 20:27:04,221 epoch 8 - iter 5210/5212 - loss 0.53009907 - time (sec): 219.70 - samples/sec: 1671.95 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-25 20:27:04,313 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-25 20:27:04,314 EPOCH 8 done: loss 0.5301 - lr: 0.000011
|
189 |
+
2023-10-25 20:27:10,440 DEV : loss 0.2523580491542816 - f1-score (micro avg) 0.0
|
190 |
+
2023-10-25 20:27:10,466 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-25 20:27:32,371 epoch 9 - iter 521/5212 - loss 0.52508937 - time (sec): 21.90 - samples/sec: 1695.81 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-25 20:27:54,597 epoch 9 - iter 1042/5212 - loss 0.54085716 - time (sec): 44.13 - samples/sec: 1626.44 - lr: 0.000010 - momentum: 0.000000
|
193 |
+
2023-10-25 20:28:16,737 epoch 9 - iter 1563/5212 - loss 0.54010812 - time (sec): 66.27 - samples/sec: 1656.38 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-25 20:28:39,178 epoch 9 - iter 2084/5212 - loss 0.54472189 - time (sec): 88.71 - samples/sec: 1642.16 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-25 20:29:01,052 epoch 9 - iter 2605/5212 - loss 0.54518847 - time (sec): 110.58 - samples/sec: 1633.86 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-25 20:29:23,296 epoch 9 - iter 3126/5212 - loss 0.54101988 - time (sec): 132.83 - samples/sec: 1638.13 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-25 20:29:45,113 epoch 9 - iter 3647/5212 - loss 0.53936286 - time (sec): 154.65 - samples/sec: 1632.42 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-25 20:30:07,429 epoch 9 - iter 4168/5212 - loss 0.53352108 - time (sec): 176.96 - samples/sec: 1649.12 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-25 20:30:29,902 epoch 9 - iter 4689/5212 - loss 0.53176607 - time (sec): 199.43 - samples/sec: 1661.49 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-25 20:30:52,350 epoch 9 - iter 5210/5212 - loss 0.52897509 - time (sec): 221.88 - samples/sec: 1655.79 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-25 20:30:52,435 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-25 20:30:52,435 EPOCH 9 done: loss 0.5289 - lr: 0.000006
|
203 |
+
2023-10-25 20:30:58,598 DEV : loss 0.26791492104530334 - f1-score (micro avg) 0.0
|
204 |
+
2023-10-25 20:30:58,624 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-25 20:31:20,588 epoch 10 - iter 521/5212 - loss 0.48688069 - time (sec): 21.96 - samples/sec: 1689.43 - lr: 0.000005 - momentum: 0.000000
|
206 |
+
2023-10-25 20:31:42,505 epoch 10 - iter 1042/5212 - loss 0.52394542 - time (sec): 43.88 - samples/sec: 1671.09 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-25 20:32:04,555 epoch 10 - iter 1563/5212 - loss 0.54120385 - time (sec): 65.93 - samples/sec: 1662.55 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-25 20:32:26,521 epoch 10 - iter 2084/5212 - loss 0.54119260 - time (sec): 87.90 - samples/sec: 1654.95 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-25 20:32:48,533 epoch 10 - iter 2605/5212 - loss 0.53504612 - time (sec): 109.91 - samples/sec: 1653.51 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-25 20:33:09,946 epoch 10 - iter 3126/5212 - loss 0.54141693 - time (sec): 131.32 - samples/sec: 1638.10 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-25 20:33:31,270 epoch 10 - iter 3647/5212 - loss 0.53472820 - time (sec): 152.64 - samples/sec: 1649.26 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-25 20:33:53,359 epoch 10 - iter 4168/5212 - loss 0.53331190 - time (sec): 174.73 - samples/sec: 1649.47 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-25 20:34:15,455 epoch 10 - iter 4689/5212 - loss 0.52669984 - time (sec): 196.83 - samples/sec: 1667.97 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-25 20:34:37,198 epoch 10 - iter 5210/5212 - loss 0.52741026 - time (sec): 218.57 - samples/sec: 1680.12 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-25 20:34:37,280 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-25 20:34:37,280 EPOCH 10 done: loss 0.5273 - lr: 0.000000
|
217 |
+
2023-10-25 20:34:44,070 DEV : loss 0.26033899188041687 - f1-score (micro avg) 0.0
|
218 |
+
2023-10-25 20:34:44,436 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-25 20:34:44,437 Loading model from best epoch ...
|
220 |
+
2023-10-25 20:34:46,052 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
221 |
+
2023-10-25 20:34:55,751
|
222 |
+
Results:
|
223 |
+
- F-score (micro) 0.3206
|
224 |
+
- F-score (macro) 0.1588
|
225 |
+
- Accuracy 0.1914
|
226 |
+
|
227 |
+
By class:
|
228 |
+
precision recall f1-score support
|
229 |
+
|
230 |
+
LOC 0.4903 0.4580 0.4736 1214
|
231 |
+
PER 0.1940 0.1126 0.1425 808
|
232 |
+
ORG 0.0588 0.0113 0.0190 353
|
233 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
234 |
+
|
235 |
+
micro avg 0.3896 0.2724 0.3206 2390
|
236 |
+
macro avg 0.1858 0.1455 0.1588 2390
|
237 |
+
weighted avg 0.3233 0.2724 0.2916 2390
|
238 |
+
|
239 |
+
2023-10-25 20:34:55,751 ----------------------------------------------------------------------------------------------------
|