File size: 25,540 Bytes
7024ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
2023-10-10 01:25:46,775 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,778 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-10 01:25:46,778 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,778 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
 - NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
2023-10-10 01:25:46,778 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,778 Train:  20847 sentences
2023-10-10 01:25:46,778         (train_with_dev=False, train_with_test=False)
2023-10-10 01:25:46,778 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,779 Training Params:
2023-10-10 01:25:46,779  - learning_rate: "0.00015" 
2023-10-10 01:25:46,779  - mini_batch_size: "4"
2023-10-10 01:25:46,779  - max_epochs: "10"
2023-10-10 01:25:46,779  - shuffle: "True"
2023-10-10 01:25:46,779 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,779 Plugins:
2023-10-10 01:25:46,779  - TensorboardLogger
2023-10-10 01:25:46,779  - LinearScheduler | warmup_fraction: '0.1'
2023-10-10 01:25:46,779 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,779 Final evaluation on model from best epoch (best-model.pt)
2023-10-10 01:25:46,779  - metric: "('micro avg', 'f1-score')"
2023-10-10 01:25:46,779 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,780 Computation:
2023-10-10 01:25:46,780  - compute on device: cuda:0
2023-10-10 01:25:46,780  - embedding storage: none
2023-10-10 01:25:46,780 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,780 Model training base path: "hmbench-newseye/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
2023-10-10 01:25:46,780 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,780 ----------------------------------------------------------------------------------------------------
2023-10-10 01:25:46,780 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-10 01:28:19,901 epoch 1 - iter 521/5212 - loss 2.78721271 - time (sec): 153.12 - samples/sec: 258.19 - lr: 0.000015 - momentum: 0.000000
2023-10-10 01:30:47,683 epoch 1 - iter 1042/5212 - loss 2.40394453 - time (sec): 300.90 - samples/sec: 246.08 - lr: 0.000030 - momentum: 0.000000
2023-10-10 01:33:20,332 epoch 1 - iter 1563/5212 - loss 1.88420497 - time (sec): 453.55 - samples/sec: 243.15 - lr: 0.000045 - momentum: 0.000000
2023-10-10 01:35:50,068 epoch 1 - iter 2084/5212 - loss 1.56398813 - time (sec): 603.29 - samples/sec: 238.94 - lr: 0.000060 - momentum: 0.000000
2023-10-10 01:38:28,783 epoch 1 - iter 2605/5212 - loss 1.32922150 - time (sec): 762.00 - samples/sec: 239.39 - lr: 0.000075 - momentum: 0.000000
2023-10-10 01:41:01,466 epoch 1 - iter 3126/5212 - loss 1.16575348 - time (sec): 914.68 - samples/sec: 240.69 - lr: 0.000090 - momentum: 0.000000
2023-10-10 01:43:35,466 epoch 1 - iter 3647/5212 - loss 1.04771990 - time (sec): 1068.68 - samples/sec: 239.12 - lr: 0.000105 - momentum: 0.000000
2023-10-10 01:46:05,151 epoch 1 - iter 4168/5212 - loss 0.94981352 - time (sec): 1218.37 - samples/sec: 240.08 - lr: 0.000120 - momentum: 0.000000
2023-10-10 01:48:42,725 epoch 1 - iter 4689/5212 - loss 0.86675606 - time (sec): 1375.94 - samples/sec: 240.43 - lr: 0.000135 - momentum: 0.000000
2023-10-10 01:51:13,055 epoch 1 - iter 5210/5212 - loss 0.80285395 - time (sec): 1526.27 - samples/sec: 240.62 - lr: 0.000150 - momentum: 0.000000
2023-10-10 01:51:13,587 ----------------------------------------------------------------------------------------------------
2023-10-10 01:51:13,588 EPOCH 1 done: loss 0.8026 - lr: 0.000150
2023-10-10 01:51:50,130 DEV : loss 0.13000161945819855 - f1-score (micro avg)  0.2937
2023-10-10 01:51:50,181 saving best model
2023-10-10 01:51:51,139 ----------------------------------------------------------------------------------------------------
2023-10-10 01:54:26,458 epoch 2 - iter 521/5212 - loss 0.17727772 - time (sec): 155.32 - samples/sec: 256.21 - lr: 0.000148 - momentum: 0.000000
2023-10-10 01:57:04,108 epoch 2 - iter 1042/5212 - loss 0.18552352 - time (sec): 312.97 - samples/sec: 251.81 - lr: 0.000147 - momentum: 0.000000
2023-10-10 01:59:40,241 epoch 2 - iter 1563/5212 - loss 0.17656777 - time (sec): 469.10 - samples/sec: 247.34 - lr: 0.000145 - momentum: 0.000000
2023-10-10 02:02:10,466 epoch 2 - iter 2084/5212 - loss 0.17347903 - time (sec): 619.32 - samples/sec: 243.06 - lr: 0.000143 - momentum: 0.000000
2023-10-10 02:04:44,612 epoch 2 - iter 2605/5212 - loss 0.17247510 - time (sec): 773.47 - samples/sec: 241.26 - lr: 0.000142 - momentum: 0.000000
2023-10-10 02:07:16,051 epoch 2 - iter 3126/5212 - loss 0.17019344 - time (sec): 924.91 - samples/sec: 240.53 - lr: 0.000140 - momentum: 0.000000
2023-10-10 02:09:48,370 epoch 2 - iter 3647/5212 - loss 0.16742648 - time (sec): 1077.23 - samples/sec: 240.03 - lr: 0.000138 - momentum: 0.000000
2023-10-10 02:12:23,147 epoch 2 - iter 4168/5212 - loss 0.16216771 - time (sec): 1232.01 - samples/sec: 240.31 - lr: 0.000137 - momentum: 0.000000
2023-10-10 02:15:01,539 epoch 2 - iter 4689/5212 - loss 0.15863022 - time (sec): 1390.40 - samples/sec: 239.62 - lr: 0.000135 - momentum: 0.000000
2023-10-10 02:17:30,737 epoch 2 - iter 5210/5212 - loss 0.15545238 - time (sec): 1539.60 - samples/sec: 238.55 - lr: 0.000133 - momentum: 0.000000
2023-10-10 02:17:31,246 ----------------------------------------------------------------------------------------------------
2023-10-10 02:17:31,247 EPOCH 2 done: loss 0.1554 - lr: 0.000133
2023-10-10 02:18:13,857 DEV : loss 0.1568019837141037 - f1-score (micro avg)  0.3643
2023-10-10 02:18:13,912 saving best model
2023-10-10 02:18:16,652 ----------------------------------------------------------------------------------------------------
2023-10-10 02:20:47,238 epoch 3 - iter 521/5212 - loss 0.09227579 - time (sec): 150.58 - samples/sec: 242.13 - lr: 0.000132 - momentum: 0.000000
2023-10-10 02:23:18,633 epoch 3 - iter 1042/5212 - loss 0.10115948 - time (sec): 301.98 - samples/sec: 236.47 - lr: 0.000130 - momentum: 0.000000
2023-10-10 02:25:54,573 epoch 3 - iter 1563/5212 - loss 0.10224575 - time (sec): 457.92 - samples/sec: 241.87 - lr: 0.000128 - momentum: 0.000000
2023-10-10 02:28:26,479 epoch 3 - iter 2084/5212 - loss 0.10442613 - time (sec): 609.82 - samples/sec: 236.77 - lr: 0.000127 - momentum: 0.000000
2023-10-10 02:30:55,098 epoch 3 - iter 2605/5212 - loss 0.10550793 - time (sec): 758.44 - samples/sec: 234.00 - lr: 0.000125 - momentum: 0.000000
2023-10-10 02:33:31,679 epoch 3 - iter 3126/5212 - loss 0.10488651 - time (sec): 915.02 - samples/sec: 237.84 - lr: 0.000123 - momentum: 0.000000
2023-10-10 02:36:05,961 epoch 3 - iter 3647/5212 - loss 0.10697333 - time (sec): 1069.30 - samples/sec: 239.46 - lr: 0.000122 - momentum: 0.000000
2023-10-10 02:38:37,130 epoch 3 - iter 4168/5212 - loss 0.10672325 - time (sec): 1220.47 - samples/sec: 240.95 - lr: 0.000120 - momentum: 0.000000
2023-10-10 02:41:12,922 epoch 3 - iter 4689/5212 - loss 0.10596268 - time (sec): 1376.27 - samples/sec: 241.08 - lr: 0.000118 - momentum: 0.000000
2023-10-10 02:43:44,745 epoch 3 - iter 5210/5212 - loss 0.10482979 - time (sec): 1528.09 - samples/sec: 240.42 - lr: 0.000117 - momentum: 0.000000
2023-10-10 02:43:45,188 ----------------------------------------------------------------------------------------------------
2023-10-10 02:43:45,188 EPOCH 3 done: loss 0.1048 - lr: 0.000117
2023-10-10 02:44:26,403 DEV : loss 0.26355189085006714 - f1-score (micro avg)  0.3544
2023-10-10 02:44:26,460 ----------------------------------------------------------------------------------------------------
2023-10-10 02:47:01,262 epoch 4 - iter 521/5212 - loss 0.06438853 - time (sec): 154.80 - samples/sec: 238.52 - lr: 0.000115 - momentum: 0.000000
2023-10-10 02:49:38,517 epoch 4 - iter 1042/5212 - loss 0.06254566 - time (sec): 312.05 - samples/sec: 231.26 - lr: 0.000113 - momentum: 0.000000
2023-10-10 02:52:14,492 epoch 4 - iter 1563/5212 - loss 0.06423763 - time (sec): 468.03 - samples/sec: 230.64 - lr: 0.000112 - momentum: 0.000000
2023-10-10 02:54:44,857 epoch 4 - iter 2084/5212 - loss 0.06688261 - time (sec): 618.39 - samples/sec: 232.20 - lr: 0.000110 - momentum: 0.000000
2023-10-10 02:57:20,257 epoch 4 - iter 2605/5212 - loss 0.07115747 - time (sec): 773.79 - samples/sec: 234.30 - lr: 0.000108 - momentum: 0.000000
2023-10-10 02:59:54,457 epoch 4 - iter 3126/5212 - loss 0.06965197 - time (sec): 927.99 - samples/sec: 238.97 - lr: 0.000107 - momentum: 0.000000
2023-10-10 03:02:33,869 epoch 4 - iter 3647/5212 - loss 0.06885936 - time (sec): 1087.41 - samples/sec: 235.99 - lr: 0.000105 - momentum: 0.000000
2023-10-10 03:05:03,715 epoch 4 - iter 4168/5212 - loss 0.07019996 - time (sec): 1237.25 - samples/sec: 236.43 - lr: 0.000103 - momentum: 0.000000
2023-10-10 03:07:37,272 epoch 4 - iter 4689/5212 - loss 0.07063262 - time (sec): 1390.81 - samples/sec: 237.63 - lr: 0.000102 - momentum: 0.000000
2023-10-10 03:10:08,879 epoch 4 - iter 5210/5212 - loss 0.07185046 - time (sec): 1542.42 - samples/sec: 238.20 - lr: 0.000100 - momentum: 0.000000
2023-10-10 03:10:09,314 ----------------------------------------------------------------------------------------------------
2023-10-10 03:10:09,314 EPOCH 4 done: loss 0.0719 - lr: 0.000100
2023-10-10 03:10:57,812 DEV : loss 0.328808069229126 - f1-score (micro avg)  0.3675
2023-10-10 03:10:57,879 saving best model
2023-10-10 03:11:09,277 ----------------------------------------------------------------------------------------------------
2023-10-10 03:13:41,434 epoch 5 - iter 521/5212 - loss 0.05178094 - time (sec): 152.15 - samples/sec: 227.02 - lr: 0.000098 - momentum: 0.000000
2023-10-10 03:16:13,044 epoch 5 - iter 1042/5212 - loss 0.05498718 - time (sec): 303.76 - samples/sec: 234.98 - lr: 0.000097 - momentum: 0.000000
2023-10-10 03:18:45,690 epoch 5 - iter 1563/5212 - loss 0.05426323 - time (sec): 456.41 - samples/sec: 241.01 - lr: 0.000095 - momentum: 0.000000
2023-10-10 03:21:23,172 epoch 5 - iter 2084/5212 - loss 0.05256449 - time (sec): 613.89 - samples/sec: 242.02 - lr: 0.000093 - momentum: 0.000000
2023-10-10 03:23:56,778 epoch 5 - iter 2605/5212 - loss 0.05299146 - time (sec): 767.50 - samples/sec: 238.88 - lr: 0.000092 - momentum: 0.000000
2023-10-10 03:26:30,782 epoch 5 - iter 3126/5212 - loss 0.05454252 - time (sec): 921.50 - samples/sec: 239.64 - lr: 0.000090 - momentum: 0.000000
2023-10-10 03:29:07,368 epoch 5 - iter 3647/5212 - loss 0.05456496 - time (sec): 1078.09 - samples/sec: 240.64 - lr: 0.000088 - momentum: 0.000000
2023-10-10 03:31:43,290 epoch 5 - iter 4168/5212 - loss 0.05333736 - time (sec): 1234.01 - samples/sec: 239.80 - lr: 0.000087 - momentum: 0.000000
2023-10-10 03:34:15,429 epoch 5 - iter 4689/5212 - loss 0.05223842 - time (sec): 1386.15 - samples/sec: 238.43 - lr: 0.000085 - momentum: 0.000000
2023-10-10 03:36:49,643 epoch 5 - iter 5210/5212 - loss 0.05325230 - time (sec): 1540.36 - samples/sec: 238.48 - lr: 0.000083 - momentum: 0.000000
2023-10-10 03:36:50,135 ----------------------------------------------------------------------------------------------------
2023-10-10 03:36:50,135 EPOCH 5 done: loss 0.0532 - lr: 0.000083
2023-10-10 03:37:32,491 DEV : loss 0.3098498284816742 - f1-score (micro avg)  0.3954
2023-10-10 03:37:32,548 saving best model
2023-10-10 03:37:35,444 ----------------------------------------------------------------------------------------------------
2023-10-10 03:40:16,955 epoch 6 - iter 521/5212 - loss 0.03216296 - time (sec): 161.51 - samples/sec: 227.66 - lr: 0.000082 - momentum: 0.000000
2023-10-10 03:42:49,627 epoch 6 - iter 1042/5212 - loss 0.03763248 - time (sec): 314.18 - samples/sec: 225.89 - lr: 0.000080 - momentum: 0.000000
2023-10-10 03:45:24,399 epoch 6 - iter 1563/5212 - loss 0.03476631 - time (sec): 468.95 - samples/sec: 234.51 - lr: 0.000078 - momentum: 0.000000
2023-10-10 03:48:01,947 epoch 6 - iter 2084/5212 - loss 0.03495034 - time (sec): 626.50 - samples/sec: 232.55 - lr: 0.000077 - momentum: 0.000000
2023-10-10 03:50:33,387 epoch 6 - iter 2605/5212 - loss 0.03541576 - time (sec): 777.94 - samples/sec: 234.85 - lr: 0.000075 - momentum: 0.000000
2023-10-10 03:53:03,173 epoch 6 - iter 3126/5212 - loss 0.03439095 - time (sec): 927.72 - samples/sec: 233.04 - lr: 0.000073 - momentum: 0.000000
2023-10-10 03:55:38,848 epoch 6 - iter 3647/5212 - loss 0.03483107 - time (sec): 1083.40 - samples/sec: 233.74 - lr: 0.000072 - momentum: 0.000000
2023-10-10 03:58:12,884 epoch 6 - iter 4168/5212 - loss 0.03532550 - time (sec): 1237.44 - samples/sec: 235.10 - lr: 0.000070 - momentum: 0.000000
2023-10-10 04:00:56,870 epoch 6 - iter 4689/5212 - loss 0.03575938 - time (sec): 1401.42 - samples/sec: 235.54 - lr: 0.000068 - momentum: 0.000000
2023-10-10 04:03:29,722 epoch 6 - iter 5210/5212 - loss 0.03599569 - time (sec): 1554.27 - samples/sec: 236.34 - lr: 0.000067 - momentum: 0.000000
2023-10-10 04:03:30,188 ----------------------------------------------------------------------------------------------------
2023-10-10 04:03:30,188 EPOCH 6 done: loss 0.0360 - lr: 0.000067
2023-10-10 04:04:12,941 DEV : loss 0.3672010004520416 - f1-score (micro avg)  0.3823
2023-10-10 04:04:13,004 ----------------------------------------------------------------------------------------------------
2023-10-10 04:06:49,841 epoch 7 - iter 521/5212 - loss 0.01901470 - time (sec): 156.83 - samples/sec: 245.25 - lr: 0.000065 - momentum: 0.000000
2023-10-10 04:09:26,255 epoch 7 - iter 1042/5212 - loss 0.02194304 - time (sec): 313.25 - samples/sec: 244.81 - lr: 0.000063 - momentum: 0.000000
2023-10-10 04:12:00,065 epoch 7 - iter 1563/5212 - loss 0.02292694 - time (sec): 467.06 - samples/sec: 239.09 - lr: 0.000062 - momentum: 0.000000
2023-10-10 04:14:34,985 epoch 7 - iter 2084/5212 - loss 0.02286490 - time (sec): 621.98 - samples/sec: 239.67 - lr: 0.000060 - momentum: 0.000000
2023-10-10 04:17:07,483 epoch 7 - iter 2605/5212 - loss 0.02158969 - time (sec): 774.48 - samples/sec: 241.38 - lr: 0.000058 - momentum: 0.000000
2023-10-10 04:19:42,460 epoch 7 - iter 3126/5212 - loss 0.02437178 - time (sec): 929.45 - samples/sec: 241.11 - lr: 0.000057 - momentum: 0.000000
2023-10-10 04:22:14,067 epoch 7 - iter 3647/5212 - loss 0.02420860 - time (sec): 1081.06 - samples/sec: 240.27 - lr: 0.000055 - momentum: 0.000000
2023-10-10 04:24:44,274 epoch 7 - iter 4168/5212 - loss 0.02497424 - time (sec): 1231.27 - samples/sec: 240.58 - lr: 0.000053 - momentum: 0.000000
2023-10-10 04:27:18,230 epoch 7 - iter 4689/5212 - loss 0.02500752 - time (sec): 1385.22 - samples/sec: 240.06 - lr: 0.000052 - momentum: 0.000000
2023-10-10 04:29:46,445 epoch 7 - iter 5210/5212 - loss 0.02487125 - time (sec): 1533.44 - samples/sec: 239.57 - lr: 0.000050 - momentum: 0.000000
2023-10-10 04:29:46,901 ----------------------------------------------------------------------------------------------------
2023-10-10 04:29:46,902 EPOCH 7 done: loss 0.0249 - lr: 0.000050
2023-10-10 04:30:31,180 DEV : loss 0.43393340706825256 - f1-score (micro avg)  0.3819
2023-10-10 04:30:31,244 ----------------------------------------------------------------------------------------------------
2023-10-10 04:33:08,702 epoch 8 - iter 521/5212 - loss 0.02118548 - time (sec): 157.46 - samples/sec: 229.44 - lr: 0.000048 - momentum: 0.000000
2023-10-10 04:35:41,639 epoch 8 - iter 1042/5212 - loss 0.01953101 - time (sec): 310.39 - samples/sec: 235.18 - lr: 0.000047 - momentum: 0.000000
2023-10-10 04:38:18,307 epoch 8 - iter 1563/5212 - loss 0.01941108 - time (sec): 467.06 - samples/sec: 237.33 - lr: 0.000045 - momentum: 0.000000
2023-10-10 04:40:52,233 epoch 8 - iter 2084/5212 - loss 0.01883043 - time (sec): 620.99 - samples/sec: 236.34 - lr: 0.000043 - momentum: 0.000000
2023-10-10 04:43:26,171 epoch 8 - iter 2605/5212 - loss 0.01862250 - time (sec): 774.92 - samples/sec: 236.00 - lr: 0.000042 - momentum: 0.000000
2023-10-10 04:46:02,246 epoch 8 - iter 3126/5212 - loss 0.01937239 - time (sec): 931.00 - samples/sec: 236.09 - lr: 0.000040 - momentum: 0.000000
2023-10-10 04:48:33,038 epoch 8 - iter 3647/5212 - loss 0.01908805 - time (sec): 1081.79 - samples/sec: 235.79 - lr: 0.000038 - momentum: 0.000000
2023-10-10 04:51:12,633 epoch 8 - iter 4168/5212 - loss 0.01889720 - time (sec): 1241.39 - samples/sec: 236.80 - lr: 0.000037 - momentum: 0.000000
2023-10-10 04:53:47,905 epoch 8 - iter 4689/5212 - loss 0.01843401 - time (sec): 1396.66 - samples/sec: 236.95 - lr: 0.000035 - momentum: 0.000000
2023-10-10 04:56:21,396 epoch 8 - iter 5210/5212 - loss 0.01859840 - time (sec): 1550.15 - samples/sec: 236.93 - lr: 0.000033 - momentum: 0.000000
2023-10-10 04:56:21,934 ----------------------------------------------------------------------------------------------------
2023-10-10 04:56:21,934 EPOCH 8 done: loss 0.0186 - lr: 0.000033
2023-10-10 04:57:03,167 DEV : loss 0.46257734298706055 - f1-score (micro avg)  0.3734
2023-10-10 04:57:03,238 ----------------------------------------------------------------------------------------------------
2023-10-10 04:59:37,592 epoch 9 - iter 521/5212 - loss 0.01100351 - time (sec): 154.35 - samples/sec: 244.77 - lr: 0.000032 - momentum: 0.000000
2023-10-10 05:02:12,911 epoch 9 - iter 1042/5212 - loss 0.01142614 - time (sec): 309.67 - samples/sec: 244.21 - lr: 0.000030 - momentum: 0.000000
2023-10-10 05:04:45,707 epoch 9 - iter 1563/5212 - loss 0.01200825 - time (sec): 462.47 - samples/sec: 238.44 - lr: 0.000028 - momentum: 0.000000
2023-10-10 05:07:25,374 epoch 9 - iter 2084/5212 - loss 0.01167246 - time (sec): 622.13 - samples/sec: 236.70 - lr: 0.000027 - momentum: 0.000000
2023-10-10 05:10:00,448 epoch 9 - iter 2605/5212 - loss 0.01211194 - time (sec): 777.21 - samples/sec: 236.18 - lr: 0.000025 - momentum: 0.000000
2023-10-10 05:12:35,180 epoch 9 - iter 3126/5212 - loss 0.01227832 - time (sec): 931.94 - samples/sec: 236.70 - lr: 0.000023 - momentum: 0.000000
2023-10-10 05:15:13,447 epoch 9 - iter 3647/5212 - loss 0.01232401 - time (sec): 1090.21 - samples/sec: 235.04 - lr: 0.000022 - momentum: 0.000000
2023-10-10 05:17:46,800 epoch 9 - iter 4168/5212 - loss 0.01205408 - time (sec): 1243.56 - samples/sec: 234.71 - lr: 0.000020 - momentum: 0.000000
2023-10-10 05:20:19,024 epoch 9 - iter 4689/5212 - loss 0.01137052 - time (sec): 1395.78 - samples/sec: 235.39 - lr: 0.000018 - momentum: 0.000000
2023-10-10 05:23:03,373 epoch 9 - iter 5210/5212 - loss 0.01116459 - time (sec): 1560.13 - samples/sec: 235.41 - lr: 0.000017 - momentum: 0.000000
2023-10-10 05:23:03,935 ----------------------------------------------------------------------------------------------------
2023-10-10 05:23:03,935 EPOCH 9 done: loss 0.0112 - lr: 0.000017
2023-10-10 05:23:45,741 DEV : loss 0.49680188298225403 - f1-score (micro avg)  0.386
2023-10-10 05:23:45,810 ----------------------------------------------------------------------------------------------------
2023-10-10 05:26:19,459 epoch 10 - iter 521/5212 - loss 0.00618823 - time (sec): 153.65 - samples/sec: 239.16 - lr: 0.000015 - momentum: 0.000000
2023-10-10 05:28:50,815 epoch 10 - iter 1042/5212 - loss 0.00778641 - time (sec): 305.00 - samples/sec: 236.39 - lr: 0.000013 - momentum: 0.000000
2023-10-10 05:31:22,417 epoch 10 - iter 1563/5212 - loss 0.00880970 - time (sec): 456.60 - samples/sec: 231.53 - lr: 0.000012 - momentum: 0.000000
2023-10-10 05:34:00,744 epoch 10 - iter 2084/5212 - loss 0.00838074 - time (sec): 614.93 - samples/sec: 234.01 - lr: 0.000010 - momentum: 0.000000
2023-10-10 05:36:40,115 epoch 10 - iter 2605/5212 - loss 0.00876966 - time (sec): 774.30 - samples/sec: 238.88 - lr: 0.000008 - momentum: 0.000000
2023-10-10 05:39:13,455 epoch 10 - iter 3126/5212 - loss 0.00882349 - time (sec): 927.64 - samples/sec: 237.17 - lr: 0.000007 - momentum: 0.000000
2023-10-10 05:41:47,684 epoch 10 - iter 3647/5212 - loss 0.00895006 - time (sec): 1081.87 - samples/sec: 238.01 - lr: 0.000005 - momentum: 0.000000
2023-10-10 05:44:19,241 epoch 10 - iter 4168/5212 - loss 0.00888338 - time (sec): 1233.43 - samples/sec: 239.39 - lr: 0.000003 - momentum: 0.000000
2023-10-10 05:46:50,896 epoch 10 - iter 4689/5212 - loss 0.00858734 - time (sec): 1385.08 - samples/sec: 240.18 - lr: 0.000002 - momentum: 0.000000
2023-10-10 05:49:20,398 epoch 10 - iter 5210/5212 - loss 0.00861144 - time (sec): 1534.59 - samples/sec: 239.31 - lr: 0.000000 - momentum: 0.000000
2023-10-10 05:49:20,941 ----------------------------------------------------------------------------------------------------
2023-10-10 05:49:20,942 EPOCH 10 done: loss 0.0086 - lr: 0.000000
2023-10-10 05:50:01,786 DEV : loss 0.507175087928772 - f1-score (micro avg)  0.382
2023-10-10 05:50:02,826 ----------------------------------------------------------------------------------------------------
2023-10-10 05:50:02,828 Loading model from best epoch ...
2023-10-10 05:50:07,141 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-10 05:51:51,254 
Results:
- F-score (micro) 0.4873
- F-score (macro) 0.327
- Accuracy 0.3265

By class:
              precision    recall  f1-score   support

         LOC     0.5032    0.6400    0.5635      1214
         PER     0.4093    0.5025    0.4511       808
         ORG     0.2982    0.2890    0.2935       353
   HumanProd     0.0000    0.0000    0.0000        15

   micro avg     0.4456    0.5377    0.4873      2390
   macro avg     0.3027    0.3579    0.3270      2390
weighted avg     0.4380    0.5377    0.4821      2390

2023-10-10 05:51:51,255 ----------------------------------------------------------------------------------------------------