stefan-it commited on
Commit
3884909
1 Parent(s): 86e313e

readme: add initial version

Browse files

Hi,

this PR introduces the initial version of model card.

Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: de
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax
9
+ inference: false
10
+ widget:
11
+ - text: In Teltsch und Jarmeritz wurden die abgegebenen Stimmen für Genossen Krapka
12
+ ungiltig erklärt , weil sie keinen Wohnort aufwiesen .
13
+ ---
14
+
15
+ # Fine-tuned Flair Model on German NewsEye NER Dataset (HIPE-2022)
16
+
17
+ This Flair model was fine-tuned on the
18
+ [German NewsEye](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-newseye.md)
19
+ NER Dataset using hmByT5 as backbone LM.
20
+
21
+ The NewsEye dataset is comprised of diachronic historical newspaper material published between 1850 and 1950
22
+ in French, German, Finnish, and Swedish.
23
+ More information can be found [here](https://dl.acm.org/doi/abs/10.1145/3404835.3463255).
24
+
25
+ The following NEs were annotated: `PER`, `LOC`, `ORG` and `HumanProd`.
26
+
27
+ # ⚠️ Inference Widget ⚠️
28
+
29
+ Fine-Tuning ByT5 models in Flair is currently done by implementing an own [`ByT5Embedding`][1] class.
30
+
31
+ This class needs to be present when running the model with Flair.
32
+
33
+ Thus, the inference widget is not working with hmByT5 at the moment on the Model Hub and is currently disabled.
34
+
35
+ This should be fixed in future, when ByT5 fine-tuning is supported in Flair directly.
36
+
37
+ [1]: https://github.com/stefan-it/hmBench/blob/main/byt5_embeddings.py
38
+
39
+ # Results
40
+
41
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
42
+
43
+ * Batch Sizes: `[8, 4]`
44
+ * Learning Rates: `[0.00015, 0.00016]`
45
+
46
+ And report micro F1-score on development set:
47
+
48
+ | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
49
+ |-------------------|--------------|--------------|--------------|--------------|--------------|--------------|
50
+ | bs4-e10-lr0.00016 | [0.401][1] | [0.3992][2] | [0.4115][3] | [0.4007][4] | [0.4289][5] | 40.83 ± 1.12 |
51
+ | bs8-e10-lr0.00016 | [0.4105][6] | [0.3921][7] | [0.3855][8] | [0.4079][9] | [0.4054][10] | 40.03 ± 0.97 |
52
+ | bs4-e10-lr0.00015 | [0.3954][11] | [0.3828][12] | [0.413][13] | [0.404][14] | [0.4028][15] | 39.96 ± 1.01 |
53
+ | bs8-e10-lr0.00015 | [0.4053][16] | [0.3935][17] | [0.3927][18] | [0.3794][19] | [0.4146][20] | 39.71 ± 1.2 |
54
+
55
+ [1]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
56
+ [2]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
57
+ [3]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
58
+ [4]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
59
+ [5]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
60
+ [6]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1
61
+ [7]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2
62
+ [8]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
63
+ [9]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4
64
+ [10]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5
65
+ [11]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
66
+ [12]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
67
+ [13]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
68
+ [14]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
69
+ [15]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
70
+ [16]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1
71
+ [17]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2
72
+ [18]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3
73
+ [19]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4
74
+ [20]: https://hf.co/hmbench/hmbench-newseye-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5
75
+
76
+ The [training log](training.log) and TensorBoard logs are also uploaded to the model hub.
77
+
78
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
79
+
80
+ # Acknowledgements
81
+
82
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
83
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
84
+
85
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
86
+ Many Thanks for providing access to the TPUs ❤️