Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697034823.6d4c7681f95b.1253.11 +3 -0
- test.tsv +0 -0
- training.log +263 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8949796b2e1b9917d0b9837d3becbabbfc895f9f270ca0cfc447505916b7a072
|
3 |
+
size 870817519
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61232308cc6f801f82580197c4700d4b9d9c879783b345b447722ff68192d374
|
3 |
+
size 870817636
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 14:57:56 0.0002 0.7907 0.1321 0.3097 0.3390 0.3237 0.1939
|
3 |
+
2 15:22:17 0.0001 0.1619 0.1600 0.2777 0.5227 0.3627 0.2228
|
4 |
+
3 15:46:27 0.0001 0.1060 0.2169 0.2666 0.5701 0.3633 0.2231
|
5 |
+
4 16:10:58 0.0001 0.0730 0.2578 0.2981 0.6250 0.4037 0.2546
|
6 |
+
5 16:35:57 0.0001 0.0524 0.3427 0.2748 0.5814 0.3733 0.2315
|
7 |
+
6 17:00:14 0.0001 0.0351 0.4194 0.2670 0.6534 0.3791 0.2357
|
8 |
+
7 17:24:47 0.0001 0.0261 0.4073 0.2776 0.6136 0.3823 0.2379
|
9 |
+
8 17:49:37 0.0000 0.0187 0.4144 0.3105 0.6098 0.4115 0.2605
|
10 |
+
9 18:13:46 0.0000 0.0131 0.4809 0.2874 0.6402 0.3967 0.2491
|
11 |
+
10 18:37:30 0.0000 0.0080 0.4764 0.2976 0.6364 0.4056 0.2555
|
runs/events.out.tfevents.1697034823.6d4c7681f95b.1253.11
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6be4975f221c38fb990fabe6b3ef95f0e78cd20a1a00b64d2b62c09b65f20ac
|
3 |
+
size 2923780
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-11 14:33:43,977 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-11 14:33:43,979 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=17, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-11 14:33:43,980 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-11 14:33:43,980 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
73 |
+
2023-10-11 14:33:43,980 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-11 14:33:43,980 Train: 20847 sentences
|
75 |
+
2023-10-11 14:33:43,980 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-11 14:33:43,980 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-11 14:33:43,980 Training Params:
|
78 |
+
2023-10-11 14:33:43,980 - learning_rate: "0.00016"
|
79 |
+
2023-10-11 14:33:43,980 - mini_batch_size: "4"
|
80 |
+
2023-10-11 14:33:43,981 - max_epochs: "10"
|
81 |
+
2023-10-11 14:33:43,981 - shuffle: "True"
|
82 |
+
2023-10-11 14:33:43,981 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-11 14:33:43,981 Plugins:
|
84 |
+
2023-10-11 14:33:43,981 - TensorboardLogger
|
85 |
+
2023-10-11 14:33:43,981 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-11 14:33:43,981 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-11 14:33:43,981 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-11 14:33:43,981 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-11 14:33:43,981 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-11 14:33:43,981 Computation:
|
91 |
+
2023-10-11 14:33:43,981 - compute on device: cuda:0
|
92 |
+
2023-10-11 14:33:43,981 - embedding storage: none
|
93 |
+
2023-10-11 14:33:43,982 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-11 14:33:43,982 Model training base path: "hmbench-newseye/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3"
|
95 |
+
2023-10-11 14:33:43,982 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-11 14:33:43,982 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-11 14:33:43,982 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-11 14:36:06,547 epoch 1 - iter 521/5212 - loss 2.76662736 - time (sec): 142.56 - samples/sec: 262.14 - lr: 0.000016 - momentum: 0.000000
|
99 |
+
2023-10-11 14:38:27,452 epoch 1 - iter 1042/5212 - loss 2.28624082 - time (sec): 283.47 - samples/sec: 270.79 - lr: 0.000032 - momentum: 0.000000
|
100 |
+
2023-10-11 14:40:44,639 epoch 1 - iter 1563/5212 - loss 1.79645371 - time (sec): 420.66 - samples/sec: 269.24 - lr: 0.000048 - momentum: 0.000000
|
101 |
+
2023-10-11 14:43:01,808 epoch 1 - iter 2084/5212 - loss 1.46859051 - time (sec): 557.82 - samples/sec: 267.94 - lr: 0.000064 - momentum: 0.000000
|
102 |
+
2023-10-11 14:45:26,500 epoch 1 - iter 2605/5212 - loss 1.27159482 - time (sec): 702.52 - samples/sec: 266.51 - lr: 0.000080 - momentum: 0.000000
|
103 |
+
2023-10-11 14:47:48,763 epoch 1 - iter 3126/5212 - loss 1.12283149 - time (sec): 844.78 - samples/sec: 264.51 - lr: 0.000096 - momentum: 0.000000
|
104 |
+
2023-10-11 14:50:12,100 epoch 1 - iter 3647/5212 - loss 1.01175361 - time (sec): 988.12 - samples/sec: 261.77 - lr: 0.000112 - momentum: 0.000000
|
105 |
+
2023-10-11 14:52:34,157 epoch 1 - iter 4168/5212 - loss 0.93063939 - time (sec): 1130.17 - samples/sec: 259.51 - lr: 0.000128 - momentum: 0.000000
|
106 |
+
2023-10-11 14:54:53,773 epoch 1 - iter 4689/5212 - loss 0.85556421 - time (sec): 1269.79 - samples/sec: 260.71 - lr: 0.000144 - momentum: 0.000000
|
107 |
+
2023-10-11 14:57:19,976 epoch 1 - iter 5210/5212 - loss 0.79086304 - time (sec): 1415.99 - samples/sec: 259.36 - lr: 0.000160 - momentum: 0.000000
|
108 |
+
2023-10-11 14:57:20,519 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-11 14:57:20,519 EPOCH 1 done: loss 0.7907 - lr: 0.000160
|
110 |
+
2023-10-11 14:57:56,736 DEV : loss 0.13207665085792542 - f1-score (micro avg) 0.3237
|
111 |
+
2023-10-11 14:57:56,789 saving best model
|
112 |
+
2023-10-11 14:57:57,698 ----------------------------------------------------------------------------------------------------
|
113 |
+
2023-10-11 15:00:22,791 epoch 2 - iter 521/5212 - loss 0.19332337 - time (sec): 145.09 - samples/sec: 254.59 - lr: 0.000158 - momentum: 0.000000
|
114 |
+
2023-10-11 15:02:45,528 epoch 2 - iter 1042/5212 - loss 0.18215094 - time (sec): 287.83 - samples/sec: 254.97 - lr: 0.000156 - momentum: 0.000000
|
115 |
+
2023-10-11 15:05:10,335 epoch 2 - iter 1563/5212 - loss 0.18444577 - time (sec): 432.63 - samples/sec: 260.62 - lr: 0.000155 - momentum: 0.000000
|
116 |
+
2023-10-11 15:07:31,990 epoch 2 - iter 2084/5212 - loss 0.18224841 - time (sec): 574.29 - samples/sec: 260.31 - lr: 0.000153 - momentum: 0.000000
|
117 |
+
2023-10-11 15:09:52,786 epoch 2 - iter 2605/5212 - loss 0.17760403 - time (sec): 715.09 - samples/sec: 258.27 - lr: 0.000151 - momentum: 0.000000
|
118 |
+
2023-10-11 15:12:16,111 epoch 2 - iter 3126/5212 - loss 0.17321912 - time (sec): 858.41 - samples/sec: 258.53 - lr: 0.000149 - momentum: 0.000000
|
119 |
+
2023-10-11 15:14:34,077 epoch 2 - iter 3647/5212 - loss 0.17155961 - time (sec): 996.38 - samples/sec: 256.43 - lr: 0.000148 - momentum: 0.000000
|
120 |
+
2023-10-11 15:16:56,628 epoch 2 - iter 4168/5212 - loss 0.16731547 - time (sec): 1138.93 - samples/sec: 256.39 - lr: 0.000146 - momentum: 0.000000
|
121 |
+
2023-10-11 15:19:19,074 epoch 2 - iter 4689/5212 - loss 0.16554814 - time (sec): 1281.37 - samples/sec: 257.92 - lr: 0.000144 - momentum: 0.000000
|
122 |
+
2023-10-11 15:21:37,400 epoch 2 - iter 5210/5212 - loss 0.16192292 - time (sec): 1419.70 - samples/sec: 258.75 - lr: 0.000142 - momentum: 0.000000
|
123 |
+
2023-10-11 15:21:37,838 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-10-11 15:21:37,838 EPOCH 2 done: loss 0.1619 - lr: 0.000142
|
125 |
+
2023-10-11 15:22:17,665 DEV : loss 0.16001686453819275 - f1-score (micro avg) 0.3627
|
126 |
+
2023-10-11 15:22:17,722 saving best model
|
127 |
+
2023-10-11 15:22:20,336 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-11 15:24:36,175 epoch 3 - iter 521/5212 - loss 0.09560052 - time (sec): 135.83 - samples/sec: 257.42 - lr: 0.000140 - momentum: 0.000000
|
129 |
+
2023-10-11 15:26:53,189 epoch 3 - iter 1042/5212 - loss 0.10144802 - time (sec): 272.85 - samples/sec: 260.58 - lr: 0.000139 - momentum: 0.000000
|
130 |
+
2023-10-11 15:29:13,216 epoch 3 - iter 1563/5212 - loss 0.09999435 - time (sec): 412.88 - samples/sec: 258.87 - lr: 0.000137 - momentum: 0.000000
|
131 |
+
2023-10-11 15:31:36,953 epoch 3 - iter 2084/5212 - loss 0.10591845 - time (sec): 556.61 - samples/sec: 261.87 - lr: 0.000135 - momentum: 0.000000
|
132 |
+
2023-10-11 15:33:57,505 epoch 3 - iter 2605/5212 - loss 0.11024910 - time (sec): 697.16 - samples/sec: 263.88 - lr: 0.000133 - momentum: 0.000000
|
133 |
+
2023-10-11 15:36:17,912 epoch 3 - iter 3126/5212 - loss 0.10967581 - time (sec): 837.57 - samples/sec: 262.61 - lr: 0.000132 - momentum: 0.000000
|
134 |
+
2023-10-11 15:38:38,424 epoch 3 - iter 3647/5212 - loss 0.10727296 - time (sec): 978.08 - samples/sec: 261.21 - lr: 0.000130 - momentum: 0.000000
|
135 |
+
2023-10-11 15:40:59,896 epoch 3 - iter 4168/5212 - loss 0.10769948 - time (sec): 1119.55 - samples/sec: 261.35 - lr: 0.000128 - momentum: 0.000000
|
136 |
+
2023-10-11 15:43:20,757 epoch 3 - iter 4689/5212 - loss 0.10703189 - time (sec): 1260.42 - samples/sec: 260.75 - lr: 0.000126 - momentum: 0.000000
|
137 |
+
2023-10-11 15:45:46,414 epoch 3 - iter 5210/5212 - loss 0.10585857 - time (sec): 1406.07 - samples/sec: 261.24 - lr: 0.000124 - momentum: 0.000000
|
138 |
+
2023-10-11 15:45:46,886 ----------------------------------------------------------------------------------------------------
|
139 |
+
2023-10-11 15:45:46,886 EPOCH 3 done: loss 0.1060 - lr: 0.000124
|
140 |
+
2023-10-11 15:46:27,270 DEV : loss 0.21690955758094788 - f1-score (micro avg) 0.3633
|
141 |
+
2023-10-11 15:46:27,322 saving best model
|
142 |
+
2023-10-11 15:46:29,931 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-11 15:48:54,172 epoch 4 - iter 521/5212 - loss 0.07319839 - time (sec): 144.24 - samples/sec: 244.92 - lr: 0.000123 - momentum: 0.000000
|
144 |
+
2023-10-11 15:51:17,181 epoch 4 - iter 1042/5212 - loss 0.07369046 - time (sec): 287.25 - samples/sec: 250.39 - lr: 0.000121 - momentum: 0.000000
|
145 |
+
2023-10-11 15:53:41,453 epoch 4 - iter 1563/5212 - loss 0.07241720 - time (sec): 431.52 - samples/sec: 253.60 - lr: 0.000119 - momentum: 0.000000
|
146 |
+
2023-10-11 15:56:04,766 epoch 4 - iter 2084/5212 - loss 0.07187332 - time (sec): 574.83 - samples/sec: 251.80 - lr: 0.000117 - momentum: 0.000000
|
147 |
+
2023-10-11 15:58:30,038 epoch 4 - iter 2605/5212 - loss 0.07110536 - time (sec): 720.10 - samples/sec: 256.81 - lr: 0.000116 - momentum: 0.000000
|
148 |
+
2023-10-11 16:00:49,154 epoch 4 - iter 3126/5212 - loss 0.07215527 - time (sec): 859.22 - samples/sec: 256.21 - lr: 0.000114 - momentum: 0.000000
|
149 |
+
2023-10-11 16:03:11,988 epoch 4 - iter 3647/5212 - loss 0.07322367 - time (sec): 1002.05 - samples/sec: 257.20 - lr: 0.000112 - momentum: 0.000000
|
150 |
+
2023-10-11 16:05:38,070 epoch 4 - iter 4168/5212 - loss 0.07331747 - time (sec): 1148.14 - samples/sec: 259.47 - lr: 0.000110 - momentum: 0.000000
|
151 |
+
2023-10-11 16:07:57,178 epoch 4 - iter 4689/5212 - loss 0.07365219 - time (sec): 1287.24 - samples/sec: 257.98 - lr: 0.000108 - momentum: 0.000000
|
152 |
+
2023-10-11 16:10:18,604 epoch 4 - iter 5210/5212 - loss 0.07301371 - time (sec): 1428.67 - samples/sec: 257.16 - lr: 0.000107 - momentum: 0.000000
|
153 |
+
2023-10-11 16:10:19,011 ----------------------------------------------------------------------------------------------------
|
154 |
+
2023-10-11 16:10:19,011 EPOCH 4 done: loss 0.0730 - lr: 0.000107
|
155 |
+
2023-10-11 16:10:58,573 DEV : loss 0.2578122615814209 - f1-score (micro avg) 0.4037
|
156 |
+
2023-10-11 16:10:58,626 saving best model
|
157 |
+
2023-10-11 16:11:01,254 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-11 16:13:24,831 epoch 5 - iter 521/5212 - loss 0.04596828 - time (sec): 143.57 - samples/sec: 250.03 - lr: 0.000105 - momentum: 0.000000
|
159 |
+
2023-10-11 16:15:52,154 epoch 5 - iter 1042/5212 - loss 0.05176257 - time (sec): 290.89 - samples/sec: 253.07 - lr: 0.000103 - momentum: 0.000000
|
160 |
+
2023-10-11 16:18:26,212 epoch 5 - iter 1563/5212 - loss 0.05301496 - time (sec): 444.95 - samples/sec: 245.48 - lr: 0.000101 - momentum: 0.000000
|
161 |
+
2023-10-11 16:20:56,560 epoch 5 - iter 2084/5212 - loss 0.05310164 - time (sec): 595.30 - samples/sec: 244.83 - lr: 0.000100 - momentum: 0.000000
|
162 |
+
2023-10-11 16:23:29,574 epoch 5 - iter 2605/5212 - loss 0.05219774 - time (sec): 748.32 - samples/sec: 246.05 - lr: 0.000098 - momentum: 0.000000
|
163 |
+
2023-10-11 16:25:52,444 epoch 5 - iter 3126/5212 - loss 0.05195458 - time (sec): 891.19 - samples/sec: 246.25 - lr: 0.000096 - momentum: 0.000000
|
164 |
+
2023-10-11 16:28:14,834 epoch 5 - iter 3647/5212 - loss 0.05186622 - time (sec): 1033.58 - samples/sec: 247.88 - lr: 0.000094 - momentum: 0.000000
|
165 |
+
2023-10-11 16:30:31,671 epoch 5 - iter 4168/5212 - loss 0.05189342 - time (sec): 1170.41 - samples/sec: 248.98 - lr: 0.000092 - momentum: 0.000000
|
166 |
+
2023-10-11 16:32:51,894 epoch 5 - iter 4689/5212 - loss 0.05074979 - time (sec): 1310.64 - samples/sec: 251.02 - lr: 0.000091 - momentum: 0.000000
|
167 |
+
2023-10-11 16:35:18,427 epoch 5 - iter 5210/5212 - loss 0.05240335 - time (sec): 1457.17 - samples/sec: 252.09 - lr: 0.000089 - momentum: 0.000000
|
168 |
+
2023-10-11 16:35:18,890 ----------------------------------------------------------------------------------------------------
|
169 |
+
2023-10-11 16:35:18,891 EPOCH 5 done: loss 0.0524 - lr: 0.000089
|
170 |
+
2023-10-11 16:35:57,847 DEV : loss 0.3427276015281677 - f1-score (micro avg) 0.3733
|
171 |
+
2023-10-11 16:35:57,906 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-11 16:38:16,413 epoch 6 - iter 521/5212 - loss 0.03453889 - time (sec): 138.50 - samples/sec: 243.67 - lr: 0.000087 - momentum: 0.000000
|
173 |
+
2023-10-11 16:40:36,448 epoch 6 - iter 1042/5212 - loss 0.03594338 - time (sec): 278.54 - samples/sec: 245.57 - lr: 0.000085 - momentum: 0.000000
|
174 |
+
2023-10-11 16:42:56,379 epoch 6 - iter 1563/5212 - loss 0.03623246 - time (sec): 418.47 - samples/sec: 250.12 - lr: 0.000084 - momentum: 0.000000
|
175 |
+
2023-10-11 16:45:13,717 epoch 6 - iter 2084/5212 - loss 0.03614444 - time (sec): 555.81 - samples/sec: 253.09 - lr: 0.000082 - momentum: 0.000000
|
176 |
+
2023-10-11 16:47:33,364 epoch 6 - iter 2605/5212 - loss 0.03645808 - time (sec): 695.46 - samples/sec: 255.18 - lr: 0.000080 - momentum: 0.000000
|
177 |
+
2023-10-11 16:49:50,937 epoch 6 - iter 3126/5212 - loss 0.03572045 - time (sec): 833.03 - samples/sec: 255.72 - lr: 0.000078 - momentum: 0.000000
|
178 |
+
2023-10-11 16:52:13,879 epoch 6 - iter 3647/5212 - loss 0.03557647 - time (sec): 975.97 - samples/sec: 258.76 - lr: 0.000076 - momentum: 0.000000
|
179 |
+
2023-10-11 16:54:39,082 epoch 6 - iter 4168/5212 - loss 0.03568794 - time (sec): 1121.17 - samples/sec: 258.91 - lr: 0.000075 - momentum: 0.000000
|
180 |
+
2023-10-11 16:57:09,848 epoch 6 - iter 4689/5212 - loss 0.03525994 - time (sec): 1271.94 - samples/sec: 259.16 - lr: 0.000073 - momentum: 0.000000
|
181 |
+
2023-10-11 16:59:33,202 epoch 6 - iter 5210/5212 - loss 0.03514270 - time (sec): 1415.29 - samples/sec: 259.42 - lr: 0.000071 - momentum: 0.000000
|
182 |
+
2023-10-11 16:59:33,838 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-11 16:59:33,838 EPOCH 6 done: loss 0.0351 - lr: 0.000071
|
184 |
+
2023-10-11 17:00:14,726 DEV : loss 0.4193594753742218 - f1-score (micro avg) 0.3791
|
185 |
+
2023-10-11 17:00:14,781 ----------------------------------------------------------------------------------------------------
|
186 |
+
2023-10-11 17:02:44,618 epoch 7 - iter 521/5212 - loss 0.02269233 - time (sec): 149.83 - samples/sec: 267.66 - lr: 0.000069 - momentum: 0.000000
|
187 |
+
2023-10-11 17:05:04,738 epoch 7 - iter 1042/5212 - loss 0.02635316 - time (sec): 289.95 - samples/sec: 262.02 - lr: 0.000068 - momentum: 0.000000
|
188 |
+
2023-10-11 17:07:27,032 epoch 7 - iter 1563/5212 - loss 0.02308396 - time (sec): 432.25 - samples/sec: 262.49 - lr: 0.000066 - momentum: 0.000000
|
189 |
+
2023-10-11 17:09:48,465 epoch 7 - iter 2084/5212 - loss 0.02400360 - time (sec): 573.68 - samples/sec: 264.91 - lr: 0.000064 - momentum: 0.000000
|
190 |
+
2023-10-11 17:12:06,814 epoch 7 - iter 2605/5212 - loss 0.02542856 - time (sec): 712.03 - samples/sec: 260.99 - lr: 0.000062 - momentum: 0.000000
|
191 |
+
2023-10-11 17:14:31,094 epoch 7 - iter 3126/5212 - loss 0.02631394 - time (sec): 856.31 - samples/sec: 260.96 - lr: 0.000060 - momentum: 0.000000
|
192 |
+
2023-10-11 17:16:53,608 epoch 7 - iter 3647/5212 - loss 0.02640215 - time (sec): 998.82 - samples/sec: 259.79 - lr: 0.000059 - momentum: 0.000000
|
193 |
+
2023-10-11 17:19:14,821 epoch 7 - iter 4168/5212 - loss 0.02608981 - time (sec): 1140.04 - samples/sec: 258.59 - lr: 0.000057 - momentum: 0.000000
|
194 |
+
2023-10-11 17:21:40,650 epoch 7 - iter 4689/5212 - loss 0.02628534 - time (sec): 1285.87 - samples/sec: 257.56 - lr: 0.000055 - momentum: 0.000000
|
195 |
+
2023-10-11 17:24:06,529 epoch 7 - iter 5210/5212 - loss 0.02607886 - time (sec): 1431.75 - samples/sec: 256.60 - lr: 0.000053 - momentum: 0.000000
|
196 |
+
2023-10-11 17:24:06,965 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-11 17:24:06,965 EPOCH 7 done: loss 0.0261 - lr: 0.000053
|
198 |
+
2023-10-11 17:24:47,377 DEV : loss 0.4072570204734802 - f1-score (micro avg) 0.3823
|
199 |
+
2023-10-11 17:24:47,431 ----------------------------------------------------------------------------------------------------
|
200 |
+
2023-10-11 17:27:15,714 epoch 8 - iter 521/5212 - loss 0.01684084 - time (sec): 148.28 - samples/sec: 248.06 - lr: 0.000052 - momentum: 0.000000
|
201 |
+
2023-10-11 17:29:41,615 epoch 8 - iter 1042/5212 - loss 0.01921364 - time (sec): 294.18 - samples/sec: 252.08 - lr: 0.000050 - momentum: 0.000000
|
202 |
+
2023-10-11 17:32:06,810 epoch 8 - iter 1563/5212 - loss 0.02074029 - time (sec): 439.38 - samples/sec: 250.98 - lr: 0.000048 - momentum: 0.000000
|
203 |
+
2023-10-11 17:34:30,337 epoch 8 - iter 2084/5212 - loss 0.01866275 - time (sec): 582.90 - samples/sec: 252.36 - lr: 0.000046 - momentum: 0.000000
|
204 |
+
2023-10-11 17:36:55,146 epoch 8 - iter 2605/5212 - loss 0.01912678 - time (sec): 727.71 - samples/sec: 253.80 - lr: 0.000044 - momentum: 0.000000
|
205 |
+
2023-10-11 17:39:18,799 epoch 8 - iter 3126/5212 - loss 0.01960685 - time (sec): 871.37 - samples/sec: 253.85 - lr: 0.000043 - momentum: 0.000000
|
206 |
+
2023-10-11 17:41:42,158 epoch 8 - iter 3647/5212 - loss 0.01902745 - time (sec): 1014.72 - samples/sec: 253.30 - lr: 0.000041 - momentum: 0.000000
|
207 |
+
2023-10-11 17:44:07,681 epoch 8 - iter 4168/5212 - loss 0.01851736 - time (sec): 1160.25 - samples/sec: 253.42 - lr: 0.000039 - momentum: 0.000000
|
208 |
+
2023-10-11 17:46:34,426 epoch 8 - iter 4689/5212 - loss 0.01823475 - time (sec): 1306.99 - samples/sec: 253.91 - lr: 0.000037 - momentum: 0.000000
|
209 |
+
2023-10-11 17:48:56,985 epoch 8 - iter 5210/5212 - loss 0.01875215 - time (sec): 1449.55 - samples/sec: 253.25 - lr: 0.000036 - momentum: 0.000000
|
210 |
+
2023-10-11 17:48:57,706 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-11 17:48:57,707 EPOCH 8 done: loss 0.0187 - lr: 0.000036
|
212 |
+
2023-10-11 17:49:37,133 DEV : loss 0.41436994075775146 - f1-score (micro avg) 0.4115
|
213 |
+
2023-10-11 17:49:37,186 saving best model
|
214 |
+
2023-10-11 17:49:39,805 ----------------------------------------------------------------------------------------------------
|
215 |
+
2023-10-11 17:52:05,310 epoch 9 - iter 521/5212 - loss 0.01196532 - time (sec): 145.50 - samples/sec: 263.89 - lr: 0.000034 - momentum: 0.000000
|
216 |
+
2023-10-11 17:54:27,376 epoch 9 - iter 1042/5212 - loss 0.01333594 - time (sec): 287.57 - samples/sec: 264.07 - lr: 0.000032 - momentum: 0.000000
|
217 |
+
2023-10-11 17:56:48,142 epoch 9 - iter 1563/5212 - loss 0.01211283 - time (sec): 428.33 - samples/sec: 260.34 - lr: 0.000030 - momentum: 0.000000
|
218 |
+
2023-10-11 17:59:07,321 epoch 9 - iter 2084/5212 - loss 0.01222749 - time (sec): 567.51 - samples/sec: 257.43 - lr: 0.000028 - momentum: 0.000000
|
219 |
+
2023-10-11 18:01:27,565 epoch 9 - iter 2605/5212 - loss 0.01192194 - time (sec): 707.76 - samples/sec: 259.45 - lr: 0.000027 - momentum: 0.000000
|
220 |
+
2023-10-11 18:03:45,920 epoch 9 - iter 3126/5212 - loss 0.01186385 - time (sec): 846.11 - samples/sec: 259.03 - lr: 0.000025 - momentum: 0.000000
|
221 |
+
2023-10-11 18:06:04,727 epoch 9 - iter 3647/5212 - loss 0.01241909 - time (sec): 984.92 - samples/sec: 260.05 - lr: 0.000023 - momentum: 0.000000
|
222 |
+
2023-10-11 18:08:24,518 epoch 9 - iter 4168/5212 - loss 0.01204146 - time (sec): 1124.71 - samples/sec: 261.02 - lr: 0.000021 - momentum: 0.000000
|
223 |
+
2023-10-11 18:10:47,837 epoch 9 - iter 4689/5212 - loss 0.01273801 - time (sec): 1268.03 - samples/sec: 260.93 - lr: 0.000020 - momentum: 0.000000
|
224 |
+
2023-10-11 18:13:07,309 epoch 9 - iter 5210/5212 - loss 0.01307196 - time (sec): 1407.50 - samples/sec: 260.86 - lr: 0.000018 - momentum: 0.000000
|
225 |
+
2023-10-11 18:13:07,901 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-11 18:13:07,901 EPOCH 9 done: loss 0.0131 - lr: 0.000018
|
227 |
+
2023-10-11 18:13:46,547 DEV : loss 0.4808931350708008 - f1-score (micro avg) 0.3967
|
228 |
+
2023-10-11 18:13:46,607 ----------------------------------------------------------------------------------------------------
|
229 |
+
2023-10-11 18:16:05,453 epoch 10 - iter 521/5212 - loss 0.00668555 - time (sec): 138.84 - samples/sec: 262.74 - lr: 0.000016 - momentum: 0.000000
|
230 |
+
2023-10-11 18:18:22,229 epoch 10 - iter 1042/5212 - loss 0.00706135 - time (sec): 275.62 - samples/sec: 260.81 - lr: 0.000014 - momentum: 0.000000
|
231 |
+
2023-10-11 18:20:40,291 epoch 10 - iter 1563/5212 - loss 0.00669620 - time (sec): 413.68 - samples/sec: 262.77 - lr: 0.000012 - momentum: 0.000000
|
232 |
+
2023-10-11 18:22:57,132 epoch 10 - iter 2084/5212 - loss 0.00716732 - time (sec): 550.52 - samples/sec: 261.09 - lr: 0.000011 - momentum: 0.000000
|
233 |
+
2023-10-11 18:25:18,034 epoch 10 - iter 2605/5212 - loss 0.00737559 - time (sec): 691.43 - samples/sec: 264.83 - lr: 0.000009 - momentum: 0.000000
|
234 |
+
2023-10-11 18:27:35,108 epoch 10 - iter 3126/5212 - loss 0.00746666 - time (sec): 828.50 - samples/sec: 264.40 - lr: 0.000007 - momentum: 0.000000
|
235 |
+
2023-10-11 18:29:52,239 epoch 10 - iter 3647/5212 - loss 0.00801610 - time (sec): 965.63 - samples/sec: 264.55 - lr: 0.000005 - momentum: 0.000000
|
236 |
+
2023-10-11 18:32:08,536 epoch 10 - iter 4168/5212 - loss 0.00797516 - time (sec): 1101.93 - samples/sec: 263.54 - lr: 0.000004 - momentum: 0.000000
|
237 |
+
2023-10-11 18:34:30,744 epoch 10 - iter 4689/5212 - loss 0.00813383 - time (sec): 1244.13 - samples/sec: 265.19 - lr: 0.000002 - momentum: 0.000000
|
238 |
+
2023-10-11 18:36:51,864 epoch 10 - iter 5210/5212 - loss 0.00803504 - time (sec): 1385.26 - samples/sec: 265.22 - lr: 0.000000 - momentum: 0.000000
|
239 |
+
2023-10-11 18:36:52,264 ----------------------------------------------------------------------------------------------------
|
240 |
+
2023-10-11 18:36:52,265 EPOCH 10 done: loss 0.0080 - lr: 0.000000
|
241 |
+
2023-10-11 18:37:30,395 DEV : loss 0.47644102573394775 - f1-score (micro avg) 0.4056
|
242 |
+
2023-10-11 18:37:31,324 ----------------------------------------------------------------------------------------------------
|
243 |
+
2023-10-11 18:37:31,326 Loading model from best epoch ...
|
244 |
+
2023-10-11 18:37:35,775 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
245 |
+
2023-10-11 18:39:14,485
|
246 |
+
Results:
|
247 |
+
- F-score (micro) 0.4756
|
248 |
+
- F-score (macro) 0.3235
|
249 |
+
- Accuracy 0.317
|
250 |
+
|
251 |
+
By class:
|
252 |
+
precision recall f1-score support
|
253 |
+
|
254 |
+
LOC 0.4876 0.5972 0.5368 1214
|
255 |
+
PER 0.4418 0.4790 0.4596 808
|
256 |
+
ORG 0.2923 0.3031 0.2976 353
|
257 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
258 |
+
|
259 |
+
micro avg 0.4455 0.5100 0.4756 2390
|
260 |
+
macro avg 0.3054 0.3448 0.3235 2390
|
261 |
+
weighted avg 0.4402 0.5100 0.4720 2390
|
262 |
+
|
263 |
+
2023-10-11 18:39:14,485 ----------------------------------------------------------------------------------------------------
|