Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1696871716.6d4c7681f95b.1253.0 +3 -0
- test.tsv +0 -0
- training.log +266 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf7e7b28552c38ca89afc8a389eae078cf859c18970949a5cede49004f9c4d1
|
3 |
+
size 870817519
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbac1255eab9b7bb902eb98d9b694efdeeec3f3c236741db9c0654aeb14d9e1c
|
3 |
+
size 870817636
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 17:39:08 0.0001 0.9389 0.1276 0.5275 0.0909 0.1551 0.0841
|
3 |
+
2 18:03:10 0.0001 0.1657 0.1198 0.2745 0.5720 0.3710 0.2291
|
4 |
+
3 18:27:40 0.0001 0.0948 0.1977 0.2712 0.6610 0.3846 0.2399
|
5 |
+
4 18:52:16 0.0001 0.0667 0.2411 0.2721 0.6705 0.3871 0.2408
|
6 |
+
5 19:16:30 0.0001 0.0495 0.3171 0.2790 0.6515 0.3907 0.2438
|
7 |
+
6 19:40:33 0.0001 0.0375 0.3395 0.2861 0.6307 0.3936 0.2465
|
8 |
+
7 20:04:40 0.0001 0.0274 0.3874 0.2909 0.6402 0.4000 0.2521
|
9 |
+
8 20:28:55 0.0000 0.0193 0.3869 0.3035 0.6098 0.4053 0.2560
|
10 |
+
9 20:53:13 0.0000 0.0146 0.4353 0.2910 0.6155 0.3951 0.2479
|
11 |
+
10 21:17:20 0.0000 0.0111 0.4450 0.2878 0.6098 0.3910 0.2449
|
runs/events.out.tfevents.1696871716.6d4c7681f95b.1253.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:429918a5bdbf8be9a583dc47bf2be99465b595780d198fa57aaf0c25abf1e534
|
3 |
+
size 1464420
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-09 17:15:16,485 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-09 17:15:16,488 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=17, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-09 17:15:16,488 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-09 17:15:16,488 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
73 |
+
2023-10-09 17:15:16,488 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-09 17:15:16,488 Train: 20847 sentences
|
75 |
+
2023-10-09 17:15:16,488 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-09 17:15:16,489 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-09 17:15:16,489 Training Params:
|
78 |
+
2023-10-09 17:15:16,489 - learning_rate: "0.00015"
|
79 |
+
2023-10-09 17:15:16,489 - mini_batch_size: "8"
|
80 |
+
2023-10-09 17:15:16,489 - max_epochs: "10"
|
81 |
+
2023-10-09 17:15:16,489 - shuffle: "True"
|
82 |
+
2023-10-09 17:15:16,489 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-09 17:15:16,489 Plugins:
|
84 |
+
2023-10-09 17:15:16,489 - TensorboardLogger
|
85 |
+
2023-10-09 17:15:16,489 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-09 17:15:16,489 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-09 17:15:16,489 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-09 17:15:16,489 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-09 17:15:16,489 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-09 17:15:16,489 Computation:
|
91 |
+
2023-10-09 17:15:16,490 - compute on device: cuda:0
|
92 |
+
2023-10-09 17:15:16,490 - embedding storage: none
|
93 |
+
2023-10-09 17:15:16,490 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-09 17:15:16,490 Model training base path: "hmbench-newseye/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
|
95 |
+
2023-10-09 17:15:16,490 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-09 17:15:16,490 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-09 17:15:16,490 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-09 17:17:37,420 epoch 1 - iter 260/2606 - loss 2.80844215 - time (sec): 140.93 - samples/sec: 279.58 - lr: 0.000015 - momentum: 0.000000
|
99 |
+
2023-10-09 17:19:54,518 epoch 1 - iter 520/2606 - loss 2.59634928 - time (sec): 278.03 - samples/sec: 265.90 - lr: 0.000030 - momentum: 0.000000
|
100 |
+
2023-10-09 17:22:11,733 epoch 1 - iter 780/2606 - loss 2.19837014 - time (sec): 415.24 - samples/sec: 264.99 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2023-10-09 17:24:27,192 epoch 1 - iter 1040/2606 - loss 1.84021340 - time (sec): 550.70 - samples/sec: 261.53 - lr: 0.000060 - momentum: 0.000000
|
102 |
+
2023-10-09 17:26:50,107 epoch 1 - iter 1300/2606 - loss 1.54998051 - time (sec): 693.62 - samples/sec: 262.04 - lr: 0.000075 - momentum: 0.000000
|
103 |
+
2023-10-09 17:29:09,005 epoch 1 - iter 1560/2606 - loss 1.36095305 - time (sec): 832.51 - samples/sec: 264.14 - lr: 0.000090 - momentum: 0.000000
|
104 |
+
2023-10-09 17:31:25,263 epoch 1 - iter 1820/2606 - loss 1.22756925 - time (sec): 968.77 - samples/sec: 263.17 - lr: 0.000105 - momentum: 0.000000
|
105 |
+
2023-10-09 17:33:44,623 epoch 1 - iter 2080/2606 - loss 1.11197802 - time (sec): 1108.13 - samples/sec: 263.29 - lr: 0.000120 - momentum: 0.000000
|
106 |
+
2023-10-09 17:36:04,875 epoch 1 - iter 2340/2606 - loss 1.01382528 - time (sec): 1248.38 - samples/sec: 264.69 - lr: 0.000135 - momentum: 0.000000
|
107 |
+
2023-10-09 17:38:28,029 epoch 1 - iter 2600/2606 - loss 0.94022654 - time (sec): 1391.54 - samples/sec: 263.48 - lr: 0.000150 - momentum: 0.000000
|
108 |
+
2023-10-09 17:38:31,088 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-09 17:38:31,088 EPOCH 1 done: loss 0.9389 - lr: 0.000150
|
110 |
+
2023-10-09 17:39:08,925 DEV : loss 0.12756438553333282 - f1-score (micro avg) 0.1551
|
111 |
+
2023-10-09 17:39:08,978 saving best model
|
112 |
+
2023-10-09 17:39:09,961 ----------------------------------------------------------------------------------------------------
|
113 |
+
2023-10-09 17:41:29,838 epoch 2 - iter 260/2606 - loss 0.21716590 - time (sec): 139.87 - samples/sec: 284.27 - lr: 0.000148 - momentum: 0.000000
|
114 |
+
2023-10-09 17:43:51,518 epoch 2 - iter 520/2606 - loss 0.21823044 - time (sec): 281.55 - samples/sec: 279.07 - lr: 0.000147 - momentum: 0.000000
|
115 |
+
2023-10-09 17:46:14,404 epoch 2 - iter 780/2606 - loss 0.20602971 - time (sec): 424.44 - samples/sec: 272.97 - lr: 0.000145 - momentum: 0.000000
|
116 |
+
2023-10-09 17:48:30,932 epoch 2 - iter 1040/2606 - loss 0.19906942 - time (sec): 560.97 - samples/sec: 267.92 - lr: 0.000143 - momentum: 0.000000
|
117 |
+
2023-10-09 17:50:52,954 epoch 2 - iter 1300/2606 - loss 0.19435757 - time (sec): 702.99 - samples/sec: 265.12 - lr: 0.000142 - momentum: 0.000000
|
118 |
+
2023-10-09 17:53:10,549 epoch 2 - iter 1560/2606 - loss 0.18819497 - time (sec): 840.59 - samples/sec: 264.28 - lr: 0.000140 - momentum: 0.000000
|
119 |
+
2023-10-09 17:55:26,312 epoch 2 - iter 1820/2606 - loss 0.18214589 - time (sec): 976.35 - samples/sec: 264.47 - lr: 0.000138 - momentum: 0.000000
|
120 |
+
2023-10-09 17:57:51,067 epoch 2 - iter 2080/2606 - loss 0.17553467 - time (sec): 1121.10 - samples/sec: 263.23 - lr: 0.000137 - momentum: 0.000000
|
121 |
+
2023-10-09 18:00:12,053 epoch 2 - iter 2340/2606 - loss 0.17073161 - time (sec): 1262.09 - samples/sec: 263.72 - lr: 0.000135 - momentum: 0.000000
|
122 |
+
2023-10-09 18:02:25,945 epoch 2 - iter 2600/2606 - loss 0.16588428 - time (sec): 1395.98 - samples/sec: 262.64 - lr: 0.000133 - momentum: 0.000000
|
123 |
+
2023-10-09 18:02:28,954 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-10-09 18:02:28,954 EPOCH 2 done: loss 0.1657 - lr: 0.000133
|
125 |
+
2023-10-09 18:03:09,987 DEV : loss 0.11978743970394135 - f1-score (micro avg) 0.371
|
126 |
+
2023-10-09 18:03:10,043 saving best model
|
127 |
+
2023-10-09 18:03:12,756 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-09 18:05:30,218 epoch 3 - iter 260/2606 - loss 0.09297887 - time (sec): 137.46 - samples/sec: 264.90 - lr: 0.000132 - momentum: 0.000000
|
129 |
+
2023-10-09 18:07:49,683 epoch 3 - iter 520/2606 - loss 0.09874622 - time (sec): 276.92 - samples/sec: 257.70 - lr: 0.000130 - momentum: 0.000000
|
130 |
+
2023-10-09 18:10:11,726 epoch 3 - iter 780/2606 - loss 0.09506556 - time (sec): 418.97 - samples/sec: 263.99 - lr: 0.000128 - momentum: 0.000000
|
131 |
+
2023-10-09 18:12:28,824 epoch 3 - iter 1040/2606 - loss 0.09671015 - time (sec): 556.06 - samples/sec: 258.83 - lr: 0.000127 - momentum: 0.000000
|
132 |
+
2023-10-09 18:14:46,288 epoch 3 - iter 1300/2606 - loss 0.09618722 - time (sec): 693.53 - samples/sec: 255.54 - lr: 0.000125 - momentum: 0.000000
|
133 |
+
2023-10-09 18:17:21,963 epoch 3 - iter 1560/2606 - loss 0.09599238 - time (sec): 849.20 - samples/sec: 255.47 - lr: 0.000123 - momentum: 0.000000
|
134 |
+
2023-10-09 18:19:49,225 epoch 3 - iter 1820/2606 - loss 0.09643398 - time (sec): 996.46 - samples/sec: 256.55 - lr: 0.000122 - momentum: 0.000000
|
135 |
+
2023-10-09 18:22:13,095 epoch 3 - iter 2080/2606 - loss 0.09553134 - time (sec): 1140.33 - samples/sec: 257.17 - lr: 0.000120 - momentum: 0.000000
|
136 |
+
2023-10-09 18:24:35,735 epoch 3 - iter 2340/2606 - loss 0.09565909 - time (sec): 1282.98 - samples/sec: 258.25 - lr: 0.000118 - momentum: 0.000000
|
137 |
+
2023-10-09 18:26:55,235 epoch 3 - iter 2600/2606 - loss 0.09460902 - time (sec): 1422.47 - samples/sec: 257.86 - lr: 0.000117 - momentum: 0.000000
|
138 |
+
2023-10-09 18:26:58,231 ----------------------------------------------------------------------------------------------------
|
139 |
+
2023-10-09 18:26:58,232 EPOCH 3 done: loss 0.0948 - lr: 0.000117
|
140 |
+
2023-10-09 18:27:40,221 DEV : loss 0.19768929481506348 - f1-score (micro avg) 0.3846
|
141 |
+
2023-10-09 18:27:40,288 saving best model
|
142 |
+
2023-10-09 18:27:43,051 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-09 18:30:08,103 epoch 4 - iter 260/2606 - loss 0.05758779 - time (sec): 145.05 - samples/sec: 251.73 - lr: 0.000115 - momentum: 0.000000
|
144 |
+
2023-10-09 18:32:28,172 epoch 4 - iter 520/2606 - loss 0.05701437 - time (sec): 285.11 - samples/sec: 252.42 - lr: 0.000113 - momentum: 0.000000
|
145 |
+
2023-10-09 18:34:43,346 epoch 4 - iter 780/2606 - loss 0.06038270 - time (sec): 420.29 - samples/sec: 256.11 - lr: 0.000112 - momentum: 0.000000
|
146 |
+
2023-10-09 18:37:06,586 epoch 4 - iter 1040/2606 - loss 0.06347394 - time (sec): 563.53 - samples/sec: 254.59 - lr: 0.000110 - momentum: 0.000000
|
147 |
+
2023-10-09 18:39:25,773 epoch 4 - iter 1300/2606 - loss 0.06753057 - time (sec): 702.72 - samples/sec: 257.50 - lr: 0.000108 - momentum: 0.000000
|
148 |
+
2023-10-09 18:41:57,299 epoch 4 - iter 1560/2606 - loss 0.06627879 - time (sec): 854.24 - samples/sec: 258.99 - lr: 0.000107 - momentum: 0.000000
|
149 |
+
2023-10-09 18:44:27,149 epoch 4 - iter 1820/2606 - loss 0.06505761 - time (sec): 1004.09 - samples/sec: 255.23 - lr: 0.000105 - momentum: 0.000000
|
150 |
+
2023-10-09 18:46:47,745 epoch 4 - iter 2080/2606 - loss 0.06531655 - time (sec): 1144.69 - samples/sec: 255.16 - lr: 0.000103 - momentum: 0.000000
|
151 |
+
2023-10-09 18:49:08,031 epoch 4 - iter 2340/2606 - loss 0.06644938 - time (sec): 1284.97 - samples/sec: 256.77 - lr: 0.000102 - momentum: 0.000000
|
152 |
+
2023-10-09 18:51:30,901 epoch 4 - iter 2600/2606 - loss 0.06675340 - time (sec): 1427.84 - samples/sec: 256.83 - lr: 0.000100 - momentum: 0.000000
|
153 |
+
2023-10-09 18:51:33,919 ----------------------------------------------------------------------------------------------------
|
154 |
+
2023-10-09 18:51:33,920 EPOCH 4 done: loss 0.0667 - lr: 0.000100
|
155 |
+
2023-10-09 18:52:16,713 DEV : loss 0.2411346584558487 - f1-score (micro avg) 0.3871
|
156 |
+
2023-10-09 18:52:16,768 saving best model
|
157 |
+
2023-10-09 18:52:19,558 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-09 18:54:37,061 epoch 5 - iter 260/2606 - loss 0.04897725 - time (sec): 137.50 - samples/sec: 250.32 - lr: 0.000098 - momentum: 0.000000
|
159 |
+
2023-10-09 18:56:59,505 epoch 5 - iter 520/2606 - loss 0.05212024 - time (sec): 279.94 - samples/sec: 254.73 - lr: 0.000097 - momentum: 0.000000
|
160 |
+
2023-10-09 18:59:18,730 epoch 5 - iter 780/2606 - loss 0.05140447 - time (sec): 419.17 - samples/sec: 262.04 - lr: 0.000095 - momentum: 0.000000
|
161 |
+
2023-10-09 19:01:43,206 epoch 5 - iter 1040/2606 - loss 0.04930560 - time (sec): 563.64 - samples/sec: 263.39 - lr: 0.000093 - momentum: 0.000000
|
162 |
+
2023-10-09 19:04:11,740 epoch 5 - iter 1300/2606 - loss 0.04940420 - time (sec): 712.18 - samples/sec: 257.16 - lr: 0.000092 - momentum: 0.000000
|
163 |
+
2023-10-09 19:06:28,925 epoch 5 - iter 1560/2606 - loss 0.05106248 - time (sec): 849.36 - samples/sec: 259.62 - lr: 0.000090 - momentum: 0.000000
|
164 |
+
2023-10-09 19:08:49,284 epoch 5 - iter 1820/2606 - loss 0.05104734 - time (sec): 989.72 - samples/sec: 261.69 - lr: 0.000088 - momentum: 0.000000
|
165 |
+
2023-10-09 19:11:08,989 epoch 5 - iter 2080/2606 - loss 0.05050373 - time (sec): 1129.43 - samples/sec: 261.66 - lr: 0.000087 - momentum: 0.000000
|
166 |
+
2023-10-09 19:13:24,149 epoch 5 - iter 2340/2606 - loss 0.04911289 - time (sec): 1264.59 - samples/sec: 260.94 - lr: 0.000085 - momentum: 0.000000
|
167 |
+
2023-10-09 19:15:47,186 epoch 5 - iter 2600/2606 - loss 0.04960549 - time (sec): 1407.62 - samples/sec: 260.13 - lr: 0.000083 - momentum: 0.000000
|
168 |
+
2023-10-09 19:15:50,688 ----------------------------------------------------------------------------------------------------
|
169 |
+
2023-10-09 19:15:50,688 EPOCH 5 done: loss 0.0495 - lr: 0.000083
|
170 |
+
2023-10-09 19:16:30,675 DEV : loss 0.3170567452907562 - f1-score (micro avg) 0.3907
|
171 |
+
2023-10-09 19:16:30,741 saving best model
|
172 |
+
2023-10-09 19:16:33,464 ----------------------------------------------------------------------------------------------------
|
173 |
+
2023-10-09 19:18:54,346 epoch 6 - iter 260/2606 - loss 0.02953684 - time (sec): 140.88 - samples/sec: 260.88 - lr: 0.000082 - momentum: 0.000000
|
174 |
+
2023-10-09 19:21:09,418 epoch 6 - iter 520/2606 - loss 0.03598038 - time (sec): 275.95 - samples/sec: 257.01 - lr: 0.000080 - momentum: 0.000000
|
175 |
+
2023-10-09 19:23:34,781 epoch 6 - iter 780/2606 - loss 0.03404511 - time (sec): 421.31 - samples/sec: 260.71 - lr: 0.000078 - momentum: 0.000000
|
176 |
+
2023-10-09 19:25:54,098 epoch 6 - iter 1040/2606 - loss 0.03515730 - time (sec): 560.63 - samples/sec: 259.17 - lr: 0.000077 - momentum: 0.000000
|
177 |
+
2023-10-09 19:28:11,300 epoch 6 - iter 1300/2606 - loss 0.03485847 - time (sec): 697.83 - samples/sec: 260.53 - lr: 0.000075 - momentum: 0.000000
|
178 |
+
2023-10-09 19:30:28,334 epoch 6 - iter 1560/2606 - loss 0.03437084 - time (sec): 834.87 - samples/sec: 258.62 - lr: 0.000073 - momentum: 0.000000
|
179 |
+
2023-10-09 19:32:52,558 epoch 6 - iter 1820/2606 - loss 0.03481753 - time (sec): 979.09 - samples/sec: 258.14 - lr: 0.000072 - momentum: 0.000000
|
180 |
+
2023-10-09 19:35:10,177 epoch 6 - iter 2080/2606 - loss 0.03570515 - time (sec): 1116.71 - samples/sec: 260.16 - lr: 0.000070 - momentum: 0.000000
|
181 |
+
2023-10-09 19:37:31,616 epoch 6 - iter 2340/2606 - loss 0.03684716 - time (sec): 1258.15 - samples/sec: 261.27 - lr: 0.000068 - momentum: 0.000000
|
182 |
+
2023-10-09 19:39:48,990 epoch 6 - iter 2600/2606 - loss 0.03755532 - time (sec): 1395.52 - samples/sec: 262.95 - lr: 0.000067 - momentum: 0.000000
|
183 |
+
2023-10-09 19:39:51,772 ----------------------------------------------------------------------------------------------------
|
184 |
+
2023-10-09 19:39:51,772 EPOCH 6 done: loss 0.0375 - lr: 0.000067
|
185 |
+
2023-10-09 19:40:33,007 DEV : loss 0.33949336409568787 - f1-score (micro avg) 0.3936
|
186 |
+
2023-10-09 19:40:33,059 saving best model
|
187 |
+
2023-10-09 19:40:36,223 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-09 19:42:58,944 epoch 7 - iter 260/2606 - loss 0.02483364 - time (sec): 142.72 - samples/sec: 268.78 - lr: 0.000065 - momentum: 0.000000
|
189 |
+
2023-10-09 19:45:20,220 epoch 7 - iter 520/2606 - loss 0.02577290 - time (sec): 283.99 - samples/sec: 269.77 - lr: 0.000063 - momentum: 0.000000
|
190 |
+
2023-10-09 19:47:45,096 epoch 7 - iter 780/2606 - loss 0.02603966 - time (sec): 428.87 - samples/sec: 260.08 - lr: 0.000062 - momentum: 0.000000
|
191 |
+
2023-10-09 19:50:02,396 epoch 7 - iter 1040/2606 - loss 0.02599984 - time (sec): 566.17 - samples/sec: 262.99 - lr: 0.000060 - momentum: 0.000000
|
192 |
+
2023-10-09 19:52:21,988 epoch 7 - iter 1300/2606 - loss 0.02629164 - time (sec): 705.76 - samples/sec: 264.61 - lr: 0.000058 - momentum: 0.000000
|
193 |
+
2023-10-09 19:54:41,201 epoch 7 - iter 1560/2606 - loss 0.02755866 - time (sec): 844.97 - samples/sec: 264.70 - lr: 0.000057 - momentum: 0.000000
|
194 |
+
2023-10-09 19:57:00,615 epoch 7 - iter 1820/2606 - loss 0.02652858 - time (sec): 984.39 - samples/sec: 263.55 - lr: 0.000055 - momentum: 0.000000
|
195 |
+
2023-10-09 19:59:22,484 epoch 7 - iter 2080/2606 - loss 0.02678278 - time (sec): 1126.26 - samples/sec: 262.35 - lr: 0.000053 - momentum: 0.000000
|
196 |
+
2023-10-09 20:01:39,845 epoch 7 - iter 2340/2606 - loss 0.02684772 - time (sec): 1263.62 - samples/sec: 262.71 - lr: 0.000052 - momentum: 0.000000
|
197 |
+
2023-10-09 20:03:57,279 epoch 7 - iter 2600/2606 - loss 0.02739470 - time (sec): 1401.05 - samples/sec: 261.70 - lr: 0.000050 - momentum: 0.000000
|
198 |
+
2023-10-09 20:04:00,381 ----------------------------------------------------------------------------------------------------
|
199 |
+
2023-10-09 20:04:00,381 EPOCH 7 done: loss 0.0274 - lr: 0.000050
|
200 |
+
2023-10-09 20:04:40,701 DEV : loss 0.38742774724960327 - f1-score (micro avg) 0.4
|
201 |
+
2023-10-09 20:04:40,755 saving best model
|
202 |
+
2023-10-09 20:04:43,466 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-09 20:07:02,590 epoch 8 - iter 260/2606 - loss 0.01385814 - time (sec): 139.12 - samples/sec: 259.45 - lr: 0.000048 - momentum: 0.000000
|
204 |
+
2023-10-09 20:09:25,786 epoch 8 - iter 520/2606 - loss 0.01675223 - time (sec): 282.31 - samples/sec: 258.12 - lr: 0.000047 - momentum: 0.000000
|
205 |
+
2023-10-09 20:11:46,436 epoch 8 - iter 780/2606 - loss 0.01929813 - time (sec): 422.96 - samples/sec: 261.89 - lr: 0.000045 - momentum: 0.000000
|
206 |
+
2023-10-09 20:14:07,638 epoch 8 - iter 1040/2606 - loss 0.01972895 - time (sec): 564.17 - samples/sec: 259.87 - lr: 0.000043 - momentum: 0.000000
|
207 |
+
2023-10-09 20:16:28,983 epoch 8 - iter 1300/2606 - loss 0.01962523 - time (sec): 705.51 - samples/sec: 258.60 - lr: 0.000042 - momentum: 0.000000
|
208 |
+
2023-10-09 20:18:48,035 epoch 8 - iter 1560/2606 - loss 0.01996312 - time (sec): 844.56 - samples/sec: 259.96 - lr: 0.000040 - momentum: 0.000000
|
209 |
+
2023-10-09 20:21:05,991 epoch 8 - iter 1820/2606 - loss 0.01993597 - time (sec): 982.52 - samples/sec: 259.22 - lr: 0.000038 - momentum: 0.000000
|
210 |
+
2023-10-09 20:23:29,379 epoch 8 - iter 2080/2606 - loss 0.01930578 - time (sec): 1125.91 - samples/sec: 260.65 - lr: 0.000037 - momentum: 0.000000
|
211 |
+
2023-10-09 20:25:49,353 epoch 8 - iter 2340/2606 - loss 0.01916722 - time (sec): 1265.88 - samples/sec: 261.06 - lr: 0.000035 - momentum: 0.000000
|
212 |
+
2023-10-09 20:28:08,993 epoch 8 - iter 2600/2606 - loss 0.01927053 - time (sec): 1405.52 - samples/sec: 260.85 - lr: 0.000033 - momentum: 0.000000
|
213 |
+
2023-10-09 20:28:12,122 ----------------------------------------------------------------------------------------------------
|
214 |
+
2023-10-09 20:28:12,123 EPOCH 8 done: loss 0.0193 - lr: 0.000033
|
215 |
+
2023-10-09 20:28:55,401 DEV : loss 0.3869289755821228 - f1-score (micro avg) 0.4053
|
216 |
+
2023-10-09 20:28:55,456 saving best model
|
217 |
+
2023-10-09 20:28:58,212 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-09 20:31:20,576 epoch 9 - iter 260/2606 - loss 0.01964526 - time (sec): 142.36 - samples/sec: 265.14 - lr: 0.000032 - momentum: 0.000000
|
219 |
+
2023-10-09 20:33:49,275 epoch 9 - iter 520/2606 - loss 0.01736846 - time (sec): 291.06 - samples/sec: 259.41 - lr: 0.000030 - momentum: 0.000000
|
220 |
+
2023-10-09 20:36:07,617 epoch 9 - iter 780/2606 - loss 0.01681947 - time (sec): 429.40 - samples/sec: 256.02 - lr: 0.000028 - momentum: 0.000000
|
221 |
+
2023-10-09 20:38:25,705 epoch 9 - iter 1040/2606 - loss 0.01643746 - time (sec): 567.49 - samples/sec: 258.74 - lr: 0.000027 - momentum: 0.000000
|
222 |
+
2023-10-09 20:40:47,560 epoch 9 - iter 1300/2606 - loss 0.01638627 - time (sec): 709.35 - samples/sec: 258.39 - lr: 0.000025 - momentum: 0.000000
|
223 |
+
2023-10-09 20:43:12,690 epoch 9 - iter 1560/2606 - loss 0.01632827 - time (sec): 854.48 - samples/sec: 257.57 - lr: 0.000023 - momentum: 0.000000
|
224 |
+
2023-10-09 20:45:29,379 epoch 9 - iter 1820/2606 - loss 0.01610700 - time (sec): 991.16 - samples/sec: 257.84 - lr: 0.000022 - momentum: 0.000000
|
225 |
+
2023-10-09 20:47:48,266 epoch 9 - iter 2080/2606 - loss 0.01530351 - time (sec): 1130.05 - samples/sec: 257.52 - lr: 0.000020 - momentum: 0.000000
|
226 |
+
2023-10-09 20:50:06,400 epoch 9 - iter 2340/2606 - loss 0.01476616 - time (sec): 1268.19 - samples/sec: 258.76 - lr: 0.000018 - momentum: 0.000000
|
227 |
+
2023-10-09 20:52:29,519 epoch 9 - iter 2600/2606 - loss 0.01456160 - time (sec): 1411.30 - samples/sec: 259.57 - lr: 0.000017 - momentum: 0.000000
|
228 |
+
2023-10-09 20:52:32,863 ----------------------------------------------------------------------------------------------------
|
229 |
+
2023-10-09 20:52:32,863 EPOCH 9 done: loss 0.0146 - lr: 0.000017
|
230 |
+
2023-10-09 20:53:13,595 DEV : loss 0.4352709650993347 - f1-score (micro avg) 0.3951
|
231 |
+
2023-10-09 20:53:13,648 ----------------------------------------------------------------------------------------------------
|
232 |
+
2023-10-09 20:55:32,333 epoch 10 - iter 260/2606 - loss 0.01430925 - time (sec): 138.68 - samples/sec: 264.73 - lr: 0.000015 - momentum: 0.000000
|
233 |
+
2023-10-09 20:57:49,209 epoch 10 - iter 520/2606 - loss 0.01237005 - time (sec): 275.56 - samples/sec: 260.68 - lr: 0.000013 - momentum: 0.000000
|
234 |
+
2023-10-09 21:00:07,081 epoch 10 - iter 780/2606 - loss 0.01311737 - time (sec): 413.43 - samples/sec: 253.88 - lr: 0.000012 - momentum: 0.000000
|
235 |
+
2023-10-09 21:02:31,957 epoch 10 - iter 1040/2606 - loss 0.01208504 - time (sec): 558.31 - samples/sec: 257.55 - lr: 0.000010 - momentum: 0.000000
|
236 |
+
2023-10-09 21:04:55,245 epoch 10 - iter 1300/2606 - loss 0.01132225 - time (sec): 701.59 - samples/sec: 263.05 - lr: 0.000008 - momentum: 0.000000
|
237 |
+
2023-10-09 21:07:13,857 epoch 10 - iter 1560/2606 - loss 0.01149290 - time (sec): 840.21 - samples/sec: 261.50 - lr: 0.000007 - momentum: 0.000000
|
238 |
+
2023-10-09 21:09:34,496 epoch 10 - iter 1820/2606 - loss 0.01187455 - time (sec): 980.85 - samples/sec: 262.04 - lr: 0.000005 - momentum: 0.000000
|
239 |
+
2023-10-09 21:11:54,667 epoch 10 - iter 2080/2606 - loss 0.01114111 - time (sec): 1121.02 - samples/sec: 262.78 - lr: 0.000003 - momentum: 0.000000
|
240 |
+
2023-10-09 21:14:15,362 epoch 10 - iter 2340/2606 - loss 0.01096729 - time (sec): 1261.71 - samples/sec: 263.22 - lr: 0.000002 - momentum: 0.000000
|
241 |
+
2023-10-09 21:16:34,194 epoch 10 - iter 2600/2606 - loss 0.01107741 - time (sec): 1400.54 - samples/sec: 261.67 - lr: 0.000000 - momentum: 0.000000
|
242 |
+
2023-10-09 21:16:37,457 ----------------------------------------------------------------------------------------------------
|
243 |
+
2023-10-09 21:16:37,458 EPOCH 10 done: loss 0.0111 - lr: 0.000000
|
244 |
+
2023-10-09 21:17:20,301 DEV : loss 0.44496238231658936 - f1-score (micro avg) 0.391
|
245 |
+
2023-10-09 21:17:21,350 ----------------------------------------------------------------------------------------------------
|
246 |
+
2023-10-09 21:17:21,352 Loading model from best epoch ...
|
247 |
+
2023-10-09 21:17:26,869 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
248 |
+
2023-10-09 21:19:11,975
|
249 |
+
Results:
|
250 |
+
- F-score (micro) 0.4469
|
251 |
+
- F-score (macro) 0.3035
|
252 |
+
- Accuracy 0.2922
|
253 |
+
|
254 |
+
By class:
|
255 |
+
precision recall f1-score support
|
256 |
+
|
257 |
+
LOC 0.4817 0.5313 0.5053 1214
|
258 |
+
PER 0.4103 0.4728 0.4393 808
|
259 |
+
ORG 0.2643 0.2748 0.2694 353
|
260 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
261 |
+
|
262 |
+
micro avg 0.4258 0.4703 0.4469 2390
|
263 |
+
macro avg 0.2891 0.3197 0.3035 2390
|
264 |
+
weighted avg 0.4224 0.4703 0.4450 2390
|
265 |
+
|
266 |
+
2023-10-09 21:19:11,976 ----------------------------------------------------------------------------------------------------
|