Upload ./training.log with huggingface_hub
Browse files- training.log +243 -0
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 20:59:54,156 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 20:59:54,157 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 20:59:54,157 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 20:59:54,157 MultiCorpus: 1166 train + 165 dev + 415 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
|
53 |
+
2023-10-25 20:59:54,157 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 20:59:54,157 Train: 1166 sentences
|
55 |
+
2023-10-25 20:59:54,157 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 20:59:54,157 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 20:59:54,157 Training Params:
|
58 |
+
2023-10-25 20:59:54,157 - learning_rate: "3e-05"
|
59 |
+
2023-10-25 20:59:54,157 - mini_batch_size: "4"
|
60 |
+
2023-10-25 20:59:54,157 - max_epochs: "10"
|
61 |
+
2023-10-25 20:59:54,157 - shuffle: "True"
|
62 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 20:59:54,158 Plugins:
|
64 |
+
2023-10-25 20:59:54,158 - TensorboardLogger
|
65 |
+
2023-10-25 20:59:54,158 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 20:59:54,158 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 20:59:54,158 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 20:59:54,158 Computation:
|
71 |
+
2023-10-25 20:59:54,158 - compute on device: cuda:0
|
72 |
+
2023-10-25 20:59:54,158 - embedding storage: none
|
73 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 20:59:54,158 Model training base path: "hmbench-newseye/fi-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
75 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 20:59:54,158 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 20:59:54,158 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 20:59:55,465 epoch 1 - iter 29/292 - loss 2.86541598 - time (sec): 1.31 - samples/sec: 2860.19 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-25 20:59:56,853 epoch 1 - iter 58/292 - loss 2.05975293 - time (sec): 2.69 - samples/sec: 3359.48 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-25 20:59:58,259 epoch 1 - iter 87/292 - loss 1.51451020 - time (sec): 4.10 - samples/sec: 3531.96 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-25 20:59:59,549 epoch 1 - iter 116/292 - loss 1.27384924 - time (sec): 5.39 - samples/sec: 3495.41 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-25 21:00:00,811 epoch 1 - iter 145/292 - loss 1.11376262 - time (sec): 6.65 - samples/sec: 3466.71 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-25 21:00:02,161 epoch 1 - iter 174/292 - loss 0.97422500 - time (sec): 8.00 - samples/sec: 3503.92 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-25 21:00:03,427 epoch 1 - iter 203/292 - loss 0.89929848 - time (sec): 9.27 - samples/sec: 3393.73 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-25 21:00:04,663 epoch 1 - iter 232/292 - loss 0.82959634 - time (sec): 10.50 - samples/sec: 3372.16 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-25 21:00:05,904 epoch 1 - iter 261/292 - loss 0.78238070 - time (sec): 11.74 - samples/sec: 3319.59 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-25 21:00:07,217 epoch 1 - iter 290/292 - loss 0.72116046 - time (sec): 13.06 - samples/sec: 3383.27 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-25 21:00:07,293 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 21:00:07,293 EPOCH 1 done: loss 0.7173 - lr: 0.000030
|
90 |
+
2023-10-25 21:00:07,947 DEV : loss 0.15696528553962708 - f1-score (micro avg) 0.5511
|
91 |
+
2023-10-25 21:00:07,951 saving best model
|
92 |
+
2023-10-25 21:00:08,347 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 21:00:09,548 epoch 2 - iter 29/292 - loss 0.17890778 - time (sec): 1.20 - samples/sec: 3436.36 - lr: 0.000030 - momentum: 0.000000
|
94 |
+
2023-10-25 21:00:10,790 epoch 2 - iter 58/292 - loss 0.19515003 - time (sec): 2.44 - samples/sec: 3323.93 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-25 21:00:12,088 epoch 2 - iter 87/292 - loss 0.17002125 - time (sec): 3.74 - samples/sec: 3331.71 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-25 21:00:13,413 epoch 2 - iter 116/292 - loss 0.16239763 - time (sec): 5.06 - samples/sec: 3330.73 - lr: 0.000029 - momentum: 0.000000
|
97 |
+
2023-10-25 21:00:14,715 epoch 2 - iter 145/292 - loss 0.15872220 - time (sec): 6.37 - samples/sec: 3353.82 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-25 21:00:16,024 epoch 2 - iter 174/292 - loss 0.17064690 - time (sec): 7.68 - samples/sec: 3268.81 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-25 21:00:17,377 epoch 2 - iter 203/292 - loss 0.17532894 - time (sec): 9.03 - samples/sec: 3244.48 - lr: 0.000028 - momentum: 0.000000
|
100 |
+
2023-10-25 21:00:18,717 epoch 2 - iter 232/292 - loss 0.17700183 - time (sec): 10.37 - samples/sec: 3216.85 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-25 21:00:20,133 epoch 2 - iter 261/292 - loss 0.16918114 - time (sec): 11.78 - samples/sec: 3325.36 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-25 21:00:21,438 epoch 2 - iter 290/292 - loss 0.15999812 - time (sec): 13.09 - samples/sec: 3384.76 - lr: 0.000027 - momentum: 0.000000
|
103 |
+
2023-10-25 21:00:21,523 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 21:00:21,523 EPOCH 2 done: loss 0.1600 - lr: 0.000027
|
105 |
+
2023-10-25 21:00:22,424 DEV : loss 0.13564454019069672 - f1-score (micro avg) 0.7072
|
106 |
+
2023-10-25 21:00:22,428 saving best model
|
107 |
+
2023-10-25 21:00:22,981 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 21:00:24,323 epoch 3 - iter 29/292 - loss 0.14544586 - time (sec): 1.34 - samples/sec: 3595.36 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-25 21:00:25,651 epoch 3 - iter 58/292 - loss 0.10941303 - time (sec): 2.67 - samples/sec: 3579.86 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-25 21:00:26,955 epoch 3 - iter 87/292 - loss 0.09430565 - time (sec): 3.97 - samples/sec: 3464.62 - lr: 0.000026 - momentum: 0.000000
|
111 |
+
2023-10-25 21:00:28,224 epoch 3 - iter 116/292 - loss 0.09566966 - time (sec): 5.24 - samples/sec: 3428.46 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-25 21:00:29,476 epoch 3 - iter 145/292 - loss 0.09347375 - time (sec): 6.49 - samples/sec: 3358.49 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-25 21:00:30,736 epoch 3 - iter 174/292 - loss 0.09163215 - time (sec): 7.75 - samples/sec: 3302.95 - lr: 0.000025 - momentum: 0.000000
|
114 |
+
2023-10-25 21:00:32,016 epoch 3 - iter 203/292 - loss 0.08722664 - time (sec): 9.03 - samples/sec: 3361.36 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-25 21:00:33,295 epoch 3 - iter 232/292 - loss 0.08761881 - time (sec): 10.31 - samples/sec: 3382.93 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-25 21:00:34,563 epoch 3 - iter 261/292 - loss 0.08941822 - time (sec): 11.58 - samples/sec: 3385.11 - lr: 0.000024 - momentum: 0.000000
|
117 |
+
2023-10-25 21:00:35,926 epoch 3 - iter 290/292 - loss 0.08796314 - time (sec): 12.94 - samples/sec: 3404.11 - lr: 0.000023 - momentum: 0.000000
|
118 |
+
2023-10-25 21:00:36,011 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 21:00:36,011 EPOCH 3 done: loss 0.0893 - lr: 0.000023
|
120 |
+
2023-10-25 21:00:36,917 DEV : loss 0.13917604088783264 - f1-score (micro avg) 0.7064
|
121 |
+
2023-10-25 21:00:36,922 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-25 21:00:38,201 epoch 4 - iter 29/292 - loss 0.06653490 - time (sec): 1.28 - samples/sec: 3265.55 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-25 21:00:39,479 epoch 4 - iter 58/292 - loss 0.05686471 - time (sec): 2.56 - samples/sec: 3556.95 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-25 21:00:40,763 epoch 4 - iter 87/292 - loss 0.05278725 - time (sec): 3.84 - samples/sec: 3383.00 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-25 21:00:42,031 epoch 4 - iter 116/292 - loss 0.05170961 - time (sec): 5.11 - samples/sec: 3384.12 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-25 21:00:43,330 epoch 4 - iter 145/292 - loss 0.05608612 - time (sec): 6.41 - samples/sec: 3383.63 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-25 21:00:44,645 epoch 4 - iter 174/292 - loss 0.05282409 - time (sec): 7.72 - samples/sec: 3404.02 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-25 21:00:45,906 epoch 4 - iter 203/292 - loss 0.05927506 - time (sec): 8.98 - samples/sec: 3389.18 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-25 21:00:47,284 epoch 4 - iter 232/292 - loss 0.05914609 - time (sec): 10.36 - samples/sec: 3417.43 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-25 21:00:48,539 epoch 4 - iter 261/292 - loss 0.05675851 - time (sec): 11.62 - samples/sec: 3436.37 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-25 21:00:49,827 epoch 4 - iter 290/292 - loss 0.05609862 - time (sec): 12.90 - samples/sec: 3427.20 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-25 21:00:49,908 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-25 21:00:49,908 EPOCH 4 done: loss 0.0559 - lr: 0.000020
|
134 |
+
2023-10-25 21:00:50,821 DEV : loss 0.13928386569023132 - f1-score (micro avg) 0.7093
|
135 |
+
2023-10-25 21:00:50,825 saving best model
|
136 |
+
2023-10-25 21:00:51,682 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-25 21:00:52,908 epoch 5 - iter 29/292 - loss 0.02277200 - time (sec): 1.22 - samples/sec: 3015.46 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2023-10-25 21:00:54,240 epoch 5 - iter 58/292 - loss 0.03421365 - time (sec): 2.56 - samples/sec: 3261.14 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-25 21:00:55,565 epoch 5 - iter 87/292 - loss 0.03319117 - time (sec): 3.88 - samples/sec: 3447.28 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-25 21:00:56,821 epoch 5 - iter 116/292 - loss 0.03424275 - time (sec): 5.14 - samples/sec: 3422.46 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-25 21:00:58,079 epoch 5 - iter 145/292 - loss 0.03661161 - time (sec): 6.39 - samples/sec: 3365.61 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-25 21:00:59,374 epoch 5 - iter 174/292 - loss 0.03815798 - time (sec): 7.69 - samples/sec: 3355.52 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-25 21:01:00,716 epoch 5 - iter 203/292 - loss 0.04010743 - time (sec): 9.03 - samples/sec: 3417.96 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-25 21:01:02,019 epoch 5 - iter 232/292 - loss 0.03710160 - time (sec): 10.33 - samples/sec: 3430.04 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-25 21:01:03,316 epoch 5 - iter 261/292 - loss 0.03759294 - time (sec): 11.63 - samples/sec: 3417.16 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-25 21:01:04,653 epoch 5 - iter 290/292 - loss 0.03667198 - time (sec): 12.97 - samples/sec: 3414.67 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-25 21:01:04,732 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-25 21:01:04,733 EPOCH 5 done: loss 0.0367 - lr: 0.000017
|
149 |
+
2023-10-25 21:01:05,633 DEV : loss 0.14212724566459656 - f1-score (micro avg) 0.714
|
150 |
+
2023-10-25 21:01:05,637 saving best model
|
151 |
+
2023-10-25 21:01:06,315 ----------------------------------------------------------------------------------------------------
|
152 |
+
2023-10-25 21:01:07,672 epoch 6 - iter 29/292 - loss 0.02796383 - time (sec): 1.35 - samples/sec: 3938.43 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-25 21:01:08,973 epoch 6 - iter 58/292 - loss 0.02811284 - time (sec): 2.66 - samples/sec: 3543.28 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-25 21:01:10,276 epoch 6 - iter 87/292 - loss 0.03036771 - time (sec): 3.96 - samples/sec: 3475.85 - lr: 0.000016 - momentum: 0.000000
|
155 |
+
2023-10-25 21:01:11,696 epoch 6 - iter 116/292 - loss 0.02940868 - time (sec): 5.38 - samples/sec: 3517.10 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-25 21:01:13,051 epoch 6 - iter 145/292 - loss 0.02904224 - time (sec): 6.73 - samples/sec: 3393.12 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-25 21:01:14,484 epoch 6 - iter 174/292 - loss 0.02614340 - time (sec): 8.17 - samples/sec: 3365.99 - lr: 0.000015 - momentum: 0.000000
|
158 |
+
2023-10-25 21:01:15,834 epoch 6 - iter 203/292 - loss 0.02631470 - time (sec): 9.52 - samples/sec: 3344.04 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-25 21:01:17,211 epoch 6 - iter 232/292 - loss 0.02881547 - time (sec): 10.89 - samples/sec: 3326.96 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-25 21:01:18,573 epoch 6 - iter 261/292 - loss 0.02920586 - time (sec): 12.25 - samples/sec: 3328.26 - lr: 0.000014 - momentum: 0.000000
|
161 |
+
2023-10-25 21:01:19,809 epoch 6 - iter 290/292 - loss 0.02831814 - time (sec): 13.49 - samples/sec: 3271.32 - lr: 0.000013 - momentum: 0.000000
|
162 |
+
2023-10-25 21:01:19,899 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-25 21:01:19,900 EPOCH 6 done: loss 0.0283 - lr: 0.000013
|
164 |
+
2023-10-25 21:01:20,807 DEV : loss 0.1747400164604187 - f1-score (micro avg) 0.7122
|
165 |
+
2023-10-25 21:01:20,811 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-25 21:01:22,111 epoch 7 - iter 29/292 - loss 0.04120099 - time (sec): 1.30 - samples/sec: 3294.77 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-25 21:01:23,385 epoch 7 - iter 58/292 - loss 0.02762419 - time (sec): 2.57 - samples/sec: 3376.34 - lr: 0.000013 - momentum: 0.000000
|
168 |
+
2023-10-25 21:01:24,813 epoch 7 - iter 87/292 - loss 0.02358102 - time (sec): 4.00 - samples/sec: 3458.12 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-25 21:01:26,154 epoch 7 - iter 116/292 - loss 0.02313168 - time (sec): 5.34 - samples/sec: 3412.19 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-25 21:01:27,465 epoch 7 - iter 145/292 - loss 0.02003259 - time (sec): 6.65 - samples/sec: 3395.06 - lr: 0.000012 - momentum: 0.000000
|
171 |
+
2023-10-25 21:01:28,781 epoch 7 - iter 174/292 - loss 0.01901409 - time (sec): 7.97 - samples/sec: 3406.98 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-25 21:01:30,060 epoch 7 - iter 203/292 - loss 0.01913836 - time (sec): 9.25 - samples/sec: 3379.93 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-25 21:01:31,363 epoch 7 - iter 232/292 - loss 0.02025448 - time (sec): 10.55 - samples/sec: 3344.38 - lr: 0.000011 - momentum: 0.000000
|
174 |
+
2023-10-25 21:01:32,656 epoch 7 - iter 261/292 - loss 0.02111959 - time (sec): 11.84 - samples/sec: 3351.11 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-25 21:01:33,948 epoch 7 - iter 290/292 - loss 0.02062935 - time (sec): 13.14 - samples/sec: 3356.78 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-10-25 21:01:34,042 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-25 21:01:34,042 EPOCH 7 done: loss 0.0205 - lr: 0.000010
|
178 |
+
2023-10-25 21:01:34,950 DEV : loss 0.17978323996067047 - f1-score (micro avg) 0.7419
|
179 |
+
2023-10-25 21:01:34,954 saving best model
|
180 |
+
2023-10-25 21:01:35,635 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-25 21:01:36,928 epoch 8 - iter 29/292 - loss 0.01127436 - time (sec): 1.29 - samples/sec: 3561.67 - lr: 0.000010 - momentum: 0.000000
|
182 |
+
2023-10-25 21:01:38,170 epoch 8 - iter 58/292 - loss 0.01585167 - time (sec): 2.53 - samples/sec: 3458.37 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-25 21:01:39,442 epoch 8 - iter 87/292 - loss 0.01729172 - time (sec): 3.80 - samples/sec: 3291.43 - lr: 0.000009 - momentum: 0.000000
|
184 |
+
2023-10-25 21:01:40,697 epoch 8 - iter 116/292 - loss 0.01428530 - time (sec): 5.06 - samples/sec: 3342.05 - lr: 0.000009 - momentum: 0.000000
|
185 |
+
2023-10-25 21:01:41,956 epoch 8 - iter 145/292 - loss 0.01396528 - time (sec): 6.32 - samples/sec: 3384.13 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-25 21:01:43,276 epoch 8 - iter 174/292 - loss 0.01386840 - time (sec): 7.64 - samples/sec: 3420.43 - lr: 0.000008 - momentum: 0.000000
|
187 |
+
2023-10-25 21:01:44,553 epoch 8 - iter 203/292 - loss 0.01341978 - time (sec): 8.91 - samples/sec: 3435.77 - lr: 0.000008 - momentum: 0.000000
|
188 |
+
2023-10-25 21:01:45,972 epoch 8 - iter 232/292 - loss 0.01198981 - time (sec): 10.33 - samples/sec: 3441.57 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-25 21:01:47,238 epoch 8 - iter 261/292 - loss 0.01283600 - time (sec): 11.60 - samples/sec: 3447.91 - lr: 0.000007 - momentum: 0.000000
|
190 |
+
2023-10-25 21:01:48,534 epoch 8 - iter 290/292 - loss 0.01389923 - time (sec): 12.90 - samples/sec: 3440.30 - lr: 0.000007 - momentum: 0.000000
|
191 |
+
2023-10-25 21:01:48,615 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-25 21:01:48,615 EPOCH 8 done: loss 0.0139 - lr: 0.000007
|
193 |
+
2023-10-25 21:01:49,531 DEV : loss 0.1903691589832306 - f1-score (micro avg) 0.7183
|
194 |
+
2023-10-25 21:01:49,536 ----------------------------------------------------------------------------------------------------
|
195 |
+
2023-10-25 21:01:50,791 epoch 9 - iter 29/292 - loss 0.00703447 - time (sec): 1.25 - samples/sec: 3230.77 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-25 21:01:52,270 epoch 9 - iter 58/292 - loss 0.01503000 - time (sec): 2.73 - samples/sec: 3130.91 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-25 21:01:53,536 epoch 9 - iter 87/292 - loss 0.01311829 - time (sec): 4.00 - samples/sec: 3223.13 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-25 21:01:54,838 epoch 9 - iter 116/292 - loss 0.01085621 - time (sec): 5.30 - samples/sec: 3138.99 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-25 21:01:56,138 epoch 9 - iter 145/292 - loss 0.00936798 - time (sec): 6.60 - samples/sec: 3217.65 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-25 21:01:57,488 epoch 9 - iter 174/292 - loss 0.00878729 - time (sec): 7.95 - samples/sec: 3312.64 - lr: 0.000005 - momentum: 0.000000
|
201 |
+
2023-10-25 21:01:58,753 epoch 9 - iter 203/292 - loss 0.00963486 - time (sec): 9.22 - samples/sec: 3320.35 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-25 21:02:00,043 epoch 9 - iter 232/292 - loss 0.01175699 - time (sec): 10.51 - samples/sec: 3347.16 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-25 21:02:01,331 epoch 9 - iter 261/292 - loss 0.01082544 - time (sec): 11.79 - samples/sec: 3336.12 - lr: 0.000004 - momentum: 0.000000
|
204 |
+
2023-10-25 21:02:02,644 epoch 9 - iter 290/292 - loss 0.01194434 - time (sec): 13.11 - samples/sec: 3364.77 - lr: 0.000003 - momentum: 0.000000
|
205 |
+
2023-10-25 21:02:02,725 ----------------------------------------------------------------------------------------------------
|
206 |
+
2023-10-25 21:02:02,726 EPOCH 9 done: loss 0.0121 - lr: 0.000003
|
207 |
+
2023-10-25 21:02:03,635 DEV : loss 0.20435144007205963 - f1-score (micro avg) 0.7343
|
208 |
+
2023-10-25 21:02:03,639 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-25 21:02:04,904 epoch 10 - iter 29/292 - loss 0.00257441 - time (sec): 1.26 - samples/sec: 3070.38 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-25 21:02:06,161 epoch 10 - iter 58/292 - loss 0.00640555 - time (sec): 2.52 - samples/sec: 3097.68 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-25 21:02:07,517 epoch 10 - iter 87/292 - loss 0.00952813 - time (sec): 3.88 - samples/sec: 3268.70 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-25 21:02:08,853 epoch 10 - iter 116/292 - loss 0.00793282 - time (sec): 5.21 - samples/sec: 3338.84 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-25 21:02:10,204 epoch 10 - iter 145/292 - loss 0.00718311 - time (sec): 6.56 - samples/sec: 3416.28 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-25 21:02:11,520 epoch 10 - iter 174/292 - loss 0.00721069 - time (sec): 7.88 - samples/sec: 3472.31 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-25 21:02:12,820 epoch 10 - iter 203/292 - loss 0.00752348 - time (sec): 9.18 - samples/sec: 3499.53 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-25 21:02:14,047 epoch 10 - iter 232/292 - loss 0.00774661 - time (sec): 10.41 - samples/sec: 3454.80 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-25 21:02:15,293 epoch 10 - iter 261/292 - loss 0.00819500 - time (sec): 11.65 - samples/sec: 3424.87 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-25 21:02:16,548 epoch 10 - iter 290/292 - loss 0.00778659 - time (sec): 12.91 - samples/sec: 3421.32 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-10-25 21:02:16,633 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-10-25 21:02:16,634 EPOCH 10 done: loss 0.0079 - lr: 0.000000
|
221 |
+
2023-10-25 21:02:17,546 DEV : loss 0.2082153558731079 - f1-score (micro avg) 0.7284
|
222 |
+
2023-10-25 21:02:18,071 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-25 21:02:18,073 Loading model from best epoch ...
|
224 |
+
2023-10-25 21:02:19,750 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
225 |
+
2023-10-25 21:02:21,279
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7611
|
228 |
+
- F-score (macro) 0.6901
|
229 |
+
- Accuracy 0.6413
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
PER 0.7962 0.8534 0.8239 348
|
235 |
+
LOC 0.6646 0.8352 0.7402 261
|
236 |
+
ORG 0.4528 0.4615 0.4571 52
|
237 |
+
HumanProd 0.7083 0.7727 0.7391 22
|
238 |
+
|
239 |
+
micro avg 0.7147 0.8141 0.7611 683
|
240 |
+
macro avg 0.6555 0.7307 0.6901 683
|
241 |
+
weighted avg 0.7170 0.8141 0.7613 683
|
242 |
+
|
243 |
+
2023-10-25 21:02:21,279 ----------------------------------------------------------------------------------------------------
|