File size: 25,332 Bytes
51eee24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2023-10-10 19:39:45,665 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,667 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-10 19:39:45,667 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,667 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
 - NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-10 19:39:45,667 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,667 Train:  7142 sentences
2023-10-10 19:39:45,667         (train_with_dev=False, train_with_test=False)
2023-10-10 19:39:45,668 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,668 Training Params:
2023-10-10 19:39:45,668  - learning_rate: "0.00015" 
2023-10-10 19:39:45,668  - mini_batch_size: "8"
2023-10-10 19:39:45,668  - max_epochs: "10"
2023-10-10 19:39:45,668  - shuffle: "True"
2023-10-10 19:39:45,668 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,668 Plugins:
2023-10-10 19:39:45,668  - TensorboardLogger
2023-10-10 19:39:45,668  - LinearScheduler | warmup_fraction: '0.1'
2023-10-10 19:39:45,668 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,668 Final evaluation on model from best epoch (best-model.pt)
2023-10-10 19:39:45,668  - metric: "('micro avg', 'f1-score')"
2023-10-10 19:39:45,668 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,669 Computation:
2023-10-10 19:39:45,669  - compute on device: cuda:0
2023-10-10 19:39:45,669  - embedding storage: none
2023-10-10 19:39:45,669 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,669 Model training base path: "hmbench-newseye/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
2023-10-10 19:39:45,669 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,669 ----------------------------------------------------------------------------------------------------
2023-10-10 19:39:45,669 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-10 19:40:37,221 epoch 1 - iter 89/893 - loss 2.82906495 - time (sec): 51.55 - samples/sec: 494.24 - lr: 0.000015 - momentum: 0.000000
2023-10-10 19:41:26,623 epoch 1 - iter 178/893 - loss 2.78110436 - time (sec): 100.95 - samples/sec: 499.36 - lr: 0.000030 - momentum: 0.000000
2023-10-10 19:42:16,721 epoch 1 - iter 267/893 - loss 2.60742789 - time (sec): 151.05 - samples/sec: 496.82 - lr: 0.000045 - momentum: 0.000000
2023-10-10 19:43:07,007 epoch 1 - iter 356/893 - loss 2.38685711 - time (sec): 201.34 - samples/sec: 494.15 - lr: 0.000060 - momentum: 0.000000
2023-10-10 19:44:00,063 epoch 1 - iter 445/893 - loss 2.13431932 - time (sec): 254.39 - samples/sec: 494.13 - lr: 0.000075 - momentum: 0.000000
2023-10-10 19:44:51,943 epoch 1 - iter 534/893 - loss 1.92436744 - time (sec): 306.27 - samples/sec: 485.92 - lr: 0.000090 - momentum: 0.000000
2023-10-10 19:45:41,674 epoch 1 - iter 623/893 - loss 1.74254208 - time (sec): 356.00 - samples/sec: 484.27 - lr: 0.000104 - momentum: 0.000000
2023-10-10 19:46:33,920 epoch 1 - iter 712/893 - loss 1.57825868 - time (sec): 408.25 - samples/sec: 484.14 - lr: 0.000119 - momentum: 0.000000
2023-10-10 19:47:28,413 epoch 1 - iter 801/893 - loss 1.44698773 - time (sec): 462.74 - samples/sec: 482.79 - lr: 0.000134 - momentum: 0.000000
2023-10-10 19:48:22,731 epoch 1 - iter 890/893 - loss 1.34261657 - time (sec): 517.06 - samples/sec: 479.59 - lr: 0.000149 - momentum: 0.000000
2023-10-10 19:48:24,352 ----------------------------------------------------------------------------------------------------
2023-10-10 19:48:24,352 EPOCH 1 done: loss 1.3396 - lr: 0.000149
2023-10-10 19:48:45,236 DEV : loss 0.2843281924724579 - f1-score (micro avg)  0.2763
2023-10-10 19:48:45,266 saving best model
2023-10-10 19:48:46,188 ----------------------------------------------------------------------------------------------------
2023-10-10 19:49:39,164 epoch 2 - iter 89/893 - loss 0.31930581 - time (sec): 52.97 - samples/sec: 499.28 - lr: 0.000148 - momentum: 0.000000
2023-10-10 19:50:29,513 epoch 2 - iter 178/893 - loss 0.31347332 - time (sec): 103.32 - samples/sec: 488.21 - lr: 0.000147 - momentum: 0.000000
2023-10-10 19:51:19,488 epoch 2 - iter 267/893 - loss 0.29696194 - time (sec): 153.30 - samples/sec: 484.60 - lr: 0.000145 - momentum: 0.000000
2023-10-10 19:52:10,169 epoch 2 - iter 356/893 - loss 0.27774706 - time (sec): 203.98 - samples/sec: 487.01 - lr: 0.000143 - momentum: 0.000000
2023-10-10 19:53:00,310 epoch 2 - iter 445/893 - loss 0.26146640 - time (sec): 254.12 - samples/sec: 488.59 - lr: 0.000142 - momentum: 0.000000
2023-10-10 19:53:52,223 epoch 2 - iter 534/893 - loss 0.25100648 - time (sec): 306.03 - samples/sec: 484.05 - lr: 0.000140 - momentum: 0.000000
2023-10-10 19:54:44,777 epoch 2 - iter 623/893 - loss 0.23745422 - time (sec): 358.59 - samples/sec: 483.90 - lr: 0.000138 - momentum: 0.000000
2023-10-10 19:55:37,395 epoch 2 - iter 712/893 - loss 0.22599111 - time (sec): 411.20 - samples/sec: 485.53 - lr: 0.000137 - momentum: 0.000000
2023-10-10 19:56:28,840 epoch 2 - iter 801/893 - loss 0.21632815 - time (sec): 462.65 - samples/sec: 483.50 - lr: 0.000135 - momentum: 0.000000
2023-10-10 19:57:21,815 epoch 2 - iter 890/893 - loss 0.20811631 - time (sec): 515.62 - samples/sec: 481.20 - lr: 0.000133 - momentum: 0.000000
2023-10-10 19:57:23,363 ----------------------------------------------------------------------------------------------------
2023-10-10 19:57:23,364 EPOCH 2 done: loss 0.2078 - lr: 0.000133
2023-10-10 19:57:46,164 DEV : loss 0.11342751234769821 - f1-score (micro avg)  0.737
2023-10-10 19:57:46,198 saving best model
2023-10-10 19:57:56,671 ----------------------------------------------------------------------------------------------------
2023-10-10 19:58:46,865 epoch 3 - iter 89/893 - loss 0.09254059 - time (sec): 50.19 - samples/sec: 475.99 - lr: 0.000132 - momentum: 0.000000
2023-10-10 19:59:37,979 epoch 3 - iter 178/893 - loss 0.08867836 - time (sec): 101.30 - samples/sec: 487.47 - lr: 0.000130 - momentum: 0.000000
2023-10-10 20:00:28,421 epoch 3 - iter 267/893 - loss 0.08987985 - time (sec): 151.75 - samples/sec: 487.94 - lr: 0.000128 - momentum: 0.000000
2023-10-10 20:01:17,835 epoch 3 - iter 356/893 - loss 0.09300563 - time (sec): 201.16 - samples/sec: 484.15 - lr: 0.000127 - momentum: 0.000000
2023-10-10 20:02:09,174 epoch 3 - iter 445/893 - loss 0.09146828 - time (sec): 252.50 - samples/sec: 488.22 - lr: 0.000125 - momentum: 0.000000
2023-10-10 20:02:59,499 epoch 3 - iter 534/893 - loss 0.08889789 - time (sec): 302.82 - samples/sec: 489.12 - lr: 0.000123 - momentum: 0.000000
2023-10-10 20:03:50,308 epoch 3 - iter 623/893 - loss 0.08580958 - time (sec): 353.63 - samples/sec: 488.96 - lr: 0.000122 - momentum: 0.000000
2023-10-10 20:04:42,049 epoch 3 - iter 712/893 - loss 0.08460481 - time (sec): 405.37 - samples/sec: 489.39 - lr: 0.000120 - momentum: 0.000000
2023-10-10 20:05:35,281 epoch 3 - iter 801/893 - loss 0.08297470 - time (sec): 458.61 - samples/sec: 490.86 - lr: 0.000118 - momentum: 0.000000
2023-10-10 20:06:25,590 epoch 3 - iter 890/893 - loss 0.08298388 - time (sec): 508.91 - samples/sec: 487.34 - lr: 0.000117 - momentum: 0.000000
2023-10-10 20:06:27,249 ----------------------------------------------------------------------------------------------------
2023-10-10 20:06:27,249 EPOCH 3 done: loss 0.0829 - lr: 0.000117
2023-10-10 20:06:49,372 DEV : loss 0.1113942340016365 - f1-score (micro avg)  0.7559
2023-10-10 20:06:49,404 saving best model
2023-10-10 20:06:56,053 ----------------------------------------------------------------------------------------------------
2023-10-10 20:07:48,821 epoch 4 - iter 89/893 - loss 0.05345803 - time (sec): 52.76 - samples/sec: 472.25 - lr: 0.000115 - momentum: 0.000000
2023-10-10 20:08:39,233 epoch 4 - iter 178/893 - loss 0.05431726 - time (sec): 103.17 - samples/sec: 476.99 - lr: 0.000113 - momentum: 0.000000
2023-10-10 20:09:31,627 epoch 4 - iter 267/893 - loss 0.05425313 - time (sec): 155.57 - samples/sec: 474.35 - lr: 0.000112 - momentum: 0.000000
2023-10-10 20:10:23,324 epoch 4 - iter 356/893 - loss 0.05786397 - time (sec): 207.26 - samples/sec: 478.70 - lr: 0.000110 - momentum: 0.000000
2023-10-10 20:11:15,726 epoch 4 - iter 445/893 - loss 0.05597032 - time (sec): 259.67 - samples/sec: 483.48 - lr: 0.000108 - momentum: 0.000000
2023-10-10 20:12:07,752 epoch 4 - iter 534/893 - loss 0.05501856 - time (sec): 311.69 - samples/sec: 483.60 - lr: 0.000107 - momentum: 0.000000
2023-10-10 20:13:01,380 epoch 4 - iter 623/893 - loss 0.05376043 - time (sec): 365.32 - samples/sec: 484.68 - lr: 0.000105 - momentum: 0.000000
2023-10-10 20:13:51,750 epoch 4 - iter 712/893 - loss 0.05374869 - time (sec): 415.69 - samples/sec: 484.81 - lr: 0.000103 - momentum: 0.000000
2023-10-10 20:14:42,974 epoch 4 - iter 801/893 - loss 0.05390271 - time (sec): 466.91 - samples/sec: 481.79 - lr: 0.000102 - momentum: 0.000000
2023-10-10 20:15:33,480 epoch 4 - iter 890/893 - loss 0.05392475 - time (sec): 517.42 - samples/sec: 479.54 - lr: 0.000100 - momentum: 0.000000
2023-10-10 20:15:34,961 ----------------------------------------------------------------------------------------------------
2023-10-10 20:15:34,962 EPOCH 4 done: loss 0.0540 - lr: 0.000100
2023-10-10 20:15:56,301 DEV : loss 0.11903274804353714 - f1-score (micro avg)  0.7738
2023-10-10 20:15:56,332 saving best model
2023-10-10 20:16:02,540 ----------------------------------------------------------------------------------------------------
2023-10-10 20:16:54,836 epoch 5 - iter 89/893 - loss 0.03937382 - time (sec): 52.29 - samples/sec: 486.27 - lr: 0.000098 - momentum: 0.000000
2023-10-10 20:17:46,858 epoch 5 - iter 178/893 - loss 0.03701172 - time (sec): 104.31 - samples/sec: 466.44 - lr: 0.000097 - momentum: 0.000000
2023-10-10 20:18:41,817 epoch 5 - iter 267/893 - loss 0.03814808 - time (sec): 159.27 - samples/sec: 467.57 - lr: 0.000095 - momentum: 0.000000
2023-10-10 20:19:35,645 epoch 5 - iter 356/893 - loss 0.04034811 - time (sec): 213.10 - samples/sec: 472.42 - lr: 0.000093 - momentum: 0.000000
2023-10-10 20:20:27,648 epoch 5 - iter 445/893 - loss 0.04030794 - time (sec): 265.10 - samples/sec: 465.76 - lr: 0.000092 - momentum: 0.000000
2023-10-10 20:21:17,438 epoch 5 - iter 534/893 - loss 0.03985960 - time (sec): 314.89 - samples/sec: 468.02 - lr: 0.000090 - momentum: 0.000000
2023-10-10 20:22:09,623 epoch 5 - iter 623/893 - loss 0.03993508 - time (sec): 367.08 - samples/sec: 469.85 - lr: 0.000088 - momentum: 0.000000
2023-10-10 20:23:02,735 epoch 5 - iter 712/893 - loss 0.03990589 - time (sec): 420.19 - samples/sec: 471.66 - lr: 0.000087 - momentum: 0.000000
2023-10-10 20:23:56,026 epoch 5 - iter 801/893 - loss 0.03955761 - time (sec): 473.48 - samples/sec: 471.16 - lr: 0.000085 - momentum: 0.000000
2023-10-10 20:24:48,739 epoch 5 - iter 890/893 - loss 0.03910254 - time (sec): 526.20 - samples/sec: 471.38 - lr: 0.000083 - momentum: 0.000000
2023-10-10 20:24:50,326 ----------------------------------------------------------------------------------------------------
2023-10-10 20:24:50,326 EPOCH 5 done: loss 0.0391 - lr: 0.000083
2023-10-10 20:25:13,897 DEV : loss 0.12937377393245697 - f1-score (micro avg)  0.788
2023-10-10 20:25:13,940 saving best model
2023-10-10 20:25:16,976 ----------------------------------------------------------------------------------------------------
2023-10-10 20:26:09,547 epoch 6 - iter 89/893 - loss 0.02822273 - time (sec): 52.57 - samples/sec: 474.24 - lr: 0.000082 - momentum: 0.000000
2023-10-10 20:27:00,916 epoch 6 - iter 178/893 - loss 0.02803573 - time (sec): 103.93 - samples/sec: 476.62 - lr: 0.000080 - momentum: 0.000000
2023-10-10 20:27:52,841 epoch 6 - iter 267/893 - loss 0.02761811 - time (sec): 155.86 - samples/sec: 482.22 - lr: 0.000078 - momentum: 0.000000
2023-10-10 20:28:41,858 epoch 6 - iter 356/893 - loss 0.02913699 - time (sec): 204.88 - samples/sec: 484.20 - lr: 0.000077 - momentum: 0.000000
2023-10-10 20:29:32,333 epoch 6 - iter 445/893 - loss 0.02861398 - time (sec): 255.35 - samples/sec: 481.80 - lr: 0.000075 - momentum: 0.000000
2023-10-10 20:30:22,684 epoch 6 - iter 534/893 - loss 0.02936834 - time (sec): 305.70 - samples/sec: 483.71 - lr: 0.000073 - momentum: 0.000000
2023-10-10 20:31:16,351 epoch 6 - iter 623/893 - loss 0.02911242 - time (sec): 359.37 - samples/sec: 484.80 - lr: 0.000072 - momentum: 0.000000
2023-10-10 20:32:07,955 epoch 6 - iter 712/893 - loss 0.02921508 - time (sec): 410.97 - samples/sec: 484.48 - lr: 0.000070 - momentum: 0.000000
2023-10-10 20:32:59,979 epoch 6 - iter 801/893 - loss 0.02955267 - time (sec): 463.00 - samples/sec: 485.26 - lr: 0.000068 - momentum: 0.000000
2023-10-10 20:33:49,274 epoch 6 - iter 890/893 - loss 0.03022345 - time (sec): 512.29 - samples/sec: 484.15 - lr: 0.000067 - momentum: 0.000000
2023-10-10 20:33:50,856 ----------------------------------------------------------------------------------------------------
2023-10-10 20:33:50,857 EPOCH 6 done: loss 0.0301 - lr: 0.000067
2023-10-10 20:34:13,518 DEV : loss 0.16373801231384277 - f1-score (micro avg)  0.7847
2023-10-10 20:34:13,556 ----------------------------------------------------------------------------------------------------
2023-10-10 20:35:05,833 epoch 7 - iter 89/893 - loss 0.01814226 - time (sec): 52.28 - samples/sec: 485.39 - lr: 0.000065 - momentum: 0.000000
2023-10-10 20:35:55,252 epoch 7 - iter 178/893 - loss 0.02138159 - time (sec): 101.69 - samples/sec: 479.04 - lr: 0.000063 - momentum: 0.000000
2023-10-10 20:36:47,244 epoch 7 - iter 267/893 - loss 0.02102136 - time (sec): 153.69 - samples/sec: 482.73 - lr: 0.000062 - momentum: 0.000000
2023-10-10 20:37:37,631 epoch 7 - iter 356/893 - loss 0.02233733 - time (sec): 204.07 - samples/sec: 484.89 - lr: 0.000060 - momentum: 0.000000
2023-10-10 20:38:28,716 epoch 7 - iter 445/893 - loss 0.02235734 - time (sec): 255.16 - samples/sec: 481.90 - lr: 0.000058 - momentum: 0.000000
2023-10-10 20:39:19,282 epoch 7 - iter 534/893 - loss 0.02197453 - time (sec): 305.72 - samples/sec: 485.02 - lr: 0.000057 - momentum: 0.000000
2023-10-10 20:40:10,988 epoch 7 - iter 623/893 - loss 0.02262488 - time (sec): 357.43 - samples/sec: 484.42 - lr: 0.000055 - momentum: 0.000000
2023-10-10 20:41:00,028 epoch 7 - iter 712/893 - loss 0.02251825 - time (sec): 406.47 - samples/sec: 483.34 - lr: 0.000053 - momentum: 0.000000
2023-10-10 20:41:52,314 epoch 7 - iter 801/893 - loss 0.02299809 - time (sec): 458.76 - samples/sec: 485.89 - lr: 0.000052 - momentum: 0.000000
2023-10-10 20:42:43,299 epoch 7 - iter 890/893 - loss 0.02327864 - time (sec): 509.74 - samples/sec: 486.71 - lr: 0.000050 - momentum: 0.000000
2023-10-10 20:42:44,897 ----------------------------------------------------------------------------------------------------
2023-10-10 20:42:44,897 EPOCH 7 done: loss 0.0233 - lr: 0.000050
2023-10-10 20:43:07,633 DEV : loss 0.17558923363685608 - f1-score (micro avg)  0.7827
2023-10-10 20:43:07,671 ----------------------------------------------------------------------------------------------------
2023-10-10 20:44:00,852 epoch 8 - iter 89/893 - loss 0.01531205 - time (sec): 53.18 - samples/sec: 461.75 - lr: 0.000048 - momentum: 0.000000
2023-10-10 20:44:51,517 epoch 8 - iter 178/893 - loss 0.01532229 - time (sec): 103.84 - samples/sec: 467.12 - lr: 0.000047 - momentum: 0.000000
2023-10-10 20:45:42,040 epoch 8 - iter 267/893 - loss 0.01676001 - time (sec): 154.37 - samples/sec: 466.78 - lr: 0.000045 - momentum: 0.000000
2023-10-10 20:46:33,877 epoch 8 - iter 356/893 - loss 0.01635882 - time (sec): 206.20 - samples/sec: 476.10 - lr: 0.000043 - momentum: 0.000000
2023-10-10 20:47:24,646 epoch 8 - iter 445/893 - loss 0.01650485 - time (sec): 256.97 - samples/sec: 477.47 - lr: 0.000042 - momentum: 0.000000
2023-10-10 20:48:14,620 epoch 8 - iter 534/893 - loss 0.01709783 - time (sec): 306.95 - samples/sec: 475.39 - lr: 0.000040 - momentum: 0.000000
2023-10-10 20:49:06,724 epoch 8 - iter 623/893 - loss 0.01756030 - time (sec): 359.05 - samples/sec: 475.74 - lr: 0.000038 - momentum: 0.000000
2023-10-10 20:49:58,454 epoch 8 - iter 712/893 - loss 0.01732975 - time (sec): 410.78 - samples/sec: 475.08 - lr: 0.000037 - momentum: 0.000000
2023-10-10 20:50:49,934 epoch 8 - iter 801/893 - loss 0.01736550 - time (sec): 462.26 - samples/sec: 478.47 - lr: 0.000035 - momentum: 0.000000
2023-10-10 20:51:42,783 epoch 8 - iter 890/893 - loss 0.01724690 - time (sec): 515.11 - samples/sec: 480.96 - lr: 0.000033 - momentum: 0.000000
2023-10-10 20:51:44,567 ----------------------------------------------------------------------------------------------------
2023-10-10 20:51:44,568 EPOCH 8 done: loss 0.0174 - lr: 0.000033
2023-10-10 20:52:07,454 DEV : loss 0.17957079410552979 - f1-score (micro avg)  0.7849
2023-10-10 20:52:07,486 ----------------------------------------------------------------------------------------------------
2023-10-10 20:52:59,178 epoch 9 - iter 89/893 - loss 0.01800137 - time (sec): 51.69 - samples/sec: 481.68 - lr: 0.000032 - momentum: 0.000000
2023-10-10 20:53:49,523 epoch 9 - iter 178/893 - loss 0.01641771 - time (sec): 102.03 - samples/sec: 478.59 - lr: 0.000030 - momentum: 0.000000
2023-10-10 20:54:39,930 epoch 9 - iter 267/893 - loss 0.01721855 - time (sec): 152.44 - samples/sec: 490.93 - lr: 0.000028 - momentum: 0.000000
2023-10-10 20:55:28,936 epoch 9 - iter 356/893 - loss 0.01603931 - time (sec): 201.45 - samples/sec: 485.42 - lr: 0.000027 - momentum: 0.000000
2023-10-10 20:56:17,981 epoch 9 - iter 445/893 - loss 0.01512545 - time (sec): 250.49 - samples/sec: 486.34 - lr: 0.000025 - momentum: 0.000000
2023-10-10 20:57:09,343 epoch 9 - iter 534/893 - loss 0.01508396 - time (sec): 301.86 - samples/sec: 484.37 - lr: 0.000023 - momentum: 0.000000
2023-10-10 20:57:58,870 epoch 9 - iter 623/893 - loss 0.01469697 - time (sec): 351.38 - samples/sec: 484.78 - lr: 0.000022 - momentum: 0.000000
2023-10-10 20:58:50,106 epoch 9 - iter 712/893 - loss 0.01406217 - time (sec): 402.62 - samples/sec: 486.23 - lr: 0.000020 - momentum: 0.000000
2023-10-10 20:59:40,498 epoch 9 - iter 801/893 - loss 0.01413326 - time (sec): 453.01 - samples/sec: 488.22 - lr: 0.000019 - momentum: 0.000000
2023-10-10 21:00:33,325 epoch 9 - iter 890/893 - loss 0.01414608 - time (sec): 505.84 - samples/sec: 490.12 - lr: 0.000017 - momentum: 0.000000
2023-10-10 21:00:35,031 ----------------------------------------------------------------------------------------------------
2023-10-10 21:00:35,031 EPOCH 9 done: loss 0.0142 - lr: 0.000017
2023-10-10 21:00:56,874 DEV : loss 0.19276094436645508 - f1-score (micro avg)  0.778
2023-10-10 21:00:56,904 ----------------------------------------------------------------------------------------------------
2023-10-10 21:01:47,781 epoch 10 - iter 89/893 - loss 0.01006358 - time (sec): 50.88 - samples/sec: 496.06 - lr: 0.000015 - momentum: 0.000000
2023-10-10 21:02:37,723 epoch 10 - iter 178/893 - loss 0.01182496 - time (sec): 100.82 - samples/sec: 488.56 - lr: 0.000013 - momentum: 0.000000
2023-10-10 21:03:26,107 epoch 10 - iter 267/893 - loss 0.01307392 - time (sec): 149.20 - samples/sec: 484.27 - lr: 0.000012 - momentum: 0.000000
2023-10-10 21:04:17,976 epoch 10 - iter 356/893 - loss 0.01229535 - time (sec): 201.07 - samples/sec: 490.49 - lr: 0.000010 - momentum: 0.000000
2023-10-10 21:05:09,179 epoch 10 - iter 445/893 - loss 0.01180387 - time (sec): 252.27 - samples/sec: 494.77 - lr: 0.000008 - momentum: 0.000000
2023-10-10 21:05:59,983 epoch 10 - iter 534/893 - loss 0.01212851 - time (sec): 303.08 - samples/sec: 490.61 - lr: 0.000007 - momentum: 0.000000
2023-10-10 21:06:51,056 epoch 10 - iter 623/893 - loss 0.01223689 - time (sec): 354.15 - samples/sec: 494.49 - lr: 0.000005 - momentum: 0.000000
2023-10-10 21:07:41,031 epoch 10 - iter 712/893 - loss 0.01282452 - time (sec): 404.12 - samples/sec: 491.58 - lr: 0.000004 - momentum: 0.000000
2023-10-10 21:08:33,478 epoch 10 - iter 801/893 - loss 0.01253621 - time (sec): 456.57 - samples/sec: 487.48 - lr: 0.000002 - momentum: 0.000000
2023-10-10 21:09:26,121 epoch 10 - iter 890/893 - loss 0.01243382 - time (sec): 509.21 - samples/sec: 487.12 - lr: 0.000000 - momentum: 0.000000
2023-10-10 21:09:27,717 ----------------------------------------------------------------------------------------------------
2023-10-10 21:09:27,718 EPOCH 10 done: loss 0.0124 - lr: 0.000000
2023-10-10 21:09:50,838 DEV : loss 0.19964276254177094 - f1-score (micro avg)  0.7778
2023-10-10 21:09:51,780 ----------------------------------------------------------------------------------------------------
2023-10-10 21:09:51,782 Loading model from best epoch ...
2023-10-10 21:09:57,984 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-10 21:11:09,160 
Results:
- F-score (micro) 0.7086
- F-score (macro) 0.6249
- Accuracy 0.5641

By class:
              precision    recall  f1-score   support

         LOC     0.7183    0.7406    0.7293      1095
         PER     0.7906    0.7648    0.7775      1012
         ORG     0.4558    0.5630    0.5038       357
   HumanProd     0.3860    0.6667    0.4889        33

   micro avg     0.6938    0.7241    0.7086      2497
   macro avg     0.5877    0.6838    0.6249      2497
weighted avg     0.7057    0.7241    0.7134      2497

2023-10-10 21:11:09,161 ----------------------------------------------------------------------------------------------------