Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697556160.0468bd9609d6.7281.13 +3 -0
- test.tsv +0 -0
- training.log +241 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:913aea9de4c9d005b8bcc77b33ebca4ffdef732805900a26de83435784623931
|
3 |
+
size 440954373
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 15:23:55 0.0000 0.5288 0.1184 0.6510 0.7333 0.6897 0.5423
|
3 |
+
2 15:25:14 0.0000 0.1156 0.0963 0.7402 0.8218 0.7789 0.6488
|
4 |
+
3 15:26:30 0.0000 0.0693 0.1253 0.7603 0.8027 0.7809 0.6570
|
5 |
+
4 15:27:47 0.0000 0.0490 0.1403 0.7717 0.8095 0.7902 0.6731
|
6 |
+
5 15:29:03 0.0000 0.0356 0.1584 0.7804 0.8122 0.7960 0.6792
|
7 |
+
6 15:30:19 0.0000 0.0269 0.1883 0.7971 0.8177 0.8073 0.6948
|
8 |
+
7 15:31:35 0.0000 0.0200 0.2027 0.8377 0.8218 0.8297 0.7286
|
9 |
+
8 15:32:51 0.0000 0.0145 0.1880 0.8114 0.8313 0.8212 0.7146
|
10 |
+
9 15:34:06 0.0000 0.0101 0.2083 0.8136 0.8313 0.8223 0.7163
|
11 |
+
10 15:35:22 0.0000 0.0064 0.2084 0.8152 0.8340 0.8245 0.7212
|
runs/events.out.tfevents.1697556160.0468bd9609d6.7281.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ac554fe407f1b50e865f2c1123b77a3a610699540dd5fa569c6be82e2cc1c0a
|
3 |
+
size 502461
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 15:22:40,778 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 15:22:40,779 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 15:22:40,779 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 15:22:40,779 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
|
49 |
+
2023-10-17 15:22:40,779 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 15:22:40,779 Train: 7142 sentences
|
51 |
+
2023-10-17 15:22:40,779 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 15:22:40,779 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 15:22:40,780 Training Params:
|
54 |
+
2023-10-17 15:22:40,780 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 15:22:40,780 - mini_batch_size: "8"
|
56 |
+
2023-10-17 15:22:40,780 - max_epochs: "10"
|
57 |
+
2023-10-17 15:22:40,780 - shuffle: "True"
|
58 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 15:22:40,780 Plugins:
|
60 |
+
2023-10-17 15:22:40,780 - TensorboardLogger
|
61 |
+
2023-10-17 15:22:40,780 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 15:22:40,780 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 15:22:40,780 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 15:22:40,780 Computation:
|
67 |
+
2023-10-17 15:22:40,780 - compute on device: cuda:0
|
68 |
+
2023-10-17 15:22:40,780 - embedding storage: none
|
69 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 15:22:40,780 Model training base path: "hmbench-newseye/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
71 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 15:22:40,780 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 15:22:40,780 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 15:22:48,008 epoch 1 - iter 89/893 - loss 2.84068290 - time (sec): 7.23 - samples/sec: 3501.73 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 15:22:55,293 epoch 1 - iter 178/893 - loss 1.76508006 - time (sec): 14.51 - samples/sec: 3476.96 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 15:23:02,323 epoch 1 - iter 267/893 - loss 1.32887323 - time (sec): 21.54 - samples/sec: 3444.56 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 15:23:09,344 epoch 1 - iter 356/893 - loss 1.07961683 - time (sec): 28.56 - samples/sec: 3429.95 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 15:23:15,876 epoch 1 - iter 445/893 - loss 0.91537277 - time (sec): 35.09 - samples/sec: 3450.08 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 15:23:22,550 epoch 1 - iter 534/893 - loss 0.79441400 - time (sec): 41.77 - samples/sec: 3488.61 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 15:23:29,582 epoch 1 - iter 623/893 - loss 0.70440578 - time (sec): 48.80 - samples/sec: 3492.34 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 15:23:37,058 epoch 1 - iter 712/893 - loss 0.62842482 - time (sec): 56.28 - samples/sec: 3498.94 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 15:23:44,694 epoch 1 - iter 801/893 - loss 0.57176466 - time (sec): 63.91 - samples/sec: 3491.49 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 15:23:52,068 epoch 1 - iter 890/893 - loss 0.52978902 - time (sec): 71.29 - samples/sec: 3481.64 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 15:23:52,243 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 15:23:52,243 EPOCH 1 done: loss 0.5288 - lr: 0.000050
|
86 |
+
2023-10-17 15:23:55,932 DEV : loss 0.11837812513113022 - f1-score (micro avg) 0.6897
|
87 |
+
2023-10-17 15:23:55,949 saving best model
|
88 |
+
2023-10-17 15:23:56,359 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 15:24:03,910 epoch 2 - iter 89/893 - loss 0.11416371 - time (sec): 7.55 - samples/sec: 3668.50 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 15:24:10,734 epoch 2 - iter 178/893 - loss 0.11054462 - time (sec): 14.37 - samples/sec: 3596.28 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 15:24:17,679 epoch 2 - iter 267/893 - loss 0.10944617 - time (sec): 21.32 - samples/sec: 3587.36 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 15:24:24,969 epoch 2 - iter 356/893 - loss 0.10974003 - time (sec): 28.61 - samples/sec: 3510.45 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 15:24:31,656 epoch 2 - iter 445/893 - loss 0.12542965 - time (sec): 35.29 - samples/sec: 3506.52 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 15:24:38,799 epoch 2 - iter 534/893 - loss 0.12518621 - time (sec): 42.44 - samples/sec: 3480.14 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 15:24:46,264 epoch 2 - iter 623/893 - loss 0.12341348 - time (sec): 49.90 - samples/sec: 3444.96 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 15:24:54,011 epoch 2 - iter 712/893 - loss 0.12016815 - time (sec): 57.65 - samples/sec: 3435.92 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 15:25:01,036 epoch 2 - iter 801/893 - loss 0.11705570 - time (sec): 64.67 - samples/sec: 3438.85 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 15:25:08,460 epoch 2 - iter 890/893 - loss 0.11562128 - time (sec): 72.10 - samples/sec: 3443.42 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 15:25:08,631 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 15:25:08,632 EPOCH 2 done: loss 0.1156 - lr: 0.000044
|
101 |
+
2023-10-17 15:25:14,003 DEV : loss 0.09630837291479111 - f1-score (micro avg) 0.7789
|
102 |
+
2023-10-17 15:25:14,021 saving best model
|
103 |
+
2023-10-17 15:25:14,500 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 15:25:21,435 epoch 3 - iter 89/893 - loss 0.07621002 - time (sec): 6.93 - samples/sec: 3510.78 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 15:25:28,317 epoch 3 - iter 178/893 - loss 0.07028836 - time (sec): 13.81 - samples/sec: 3606.54 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 15:25:35,746 epoch 3 - iter 267/893 - loss 0.06895379 - time (sec): 21.24 - samples/sec: 3639.95 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 15:25:42,631 epoch 3 - iter 356/893 - loss 0.06871513 - time (sec): 28.12 - samples/sec: 3624.74 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 15:25:50,043 epoch 3 - iter 445/893 - loss 0.07020606 - time (sec): 35.54 - samples/sec: 3608.17 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 15:25:56,658 epoch 3 - iter 534/893 - loss 0.07084888 - time (sec): 42.15 - samples/sec: 3570.61 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 15:26:03,774 epoch 3 - iter 623/893 - loss 0.07076245 - time (sec): 49.27 - samples/sec: 3525.50 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 15:26:11,199 epoch 3 - iter 712/893 - loss 0.07034170 - time (sec): 56.69 - samples/sec: 3514.66 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 15:26:19,031 epoch 3 - iter 801/893 - loss 0.06997454 - time (sec): 64.52 - samples/sec: 3487.38 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 15:26:25,774 epoch 3 - iter 890/893 - loss 0.06927984 - time (sec): 71.27 - samples/sec: 3479.19 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 15:26:26,014 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 15:26:26,015 EPOCH 3 done: loss 0.0693 - lr: 0.000039
|
116 |
+
2023-10-17 15:26:30,286 DEV : loss 0.12525002658367157 - f1-score (micro avg) 0.7809
|
117 |
+
2023-10-17 15:26:30,306 saving best model
|
118 |
+
2023-10-17 15:26:30,824 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 15:26:38,462 epoch 4 - iter 89/893 - loss 0.05510630 - time (sec): 7.63 - samples/sec: 3358.06 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 15:26:45,580 epoch 4 - iter 178/893 - loss 0.04948991 - time (sec): 14.75 - samples/sec: 3444.13 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 15:26:52,737 epoch 4 - iter 267/893 - loss 0.04962954 - time (sec): 21.91 - samples/sec: 3459.17 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 15:26:59,532 epoch 4 - iter 356/893 - loss 0.04790656 - time (sec): 28.70 - samples/sec: 3465.08 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 15:27:06,747 epoch 4 - iter 445/893 - loss 0.04939163 - time (sec): 35.92 - samples/sec: 3439.54 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 15:27:13,550 epoch 4 - iter 534/893 - loss 0.04991515 - time (sec): 42.72 - samples/sec: 3455.63 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 15:27:20,682 epoch 4 - iter 623/893 - loss 0.04845630 - time (sec): 49.85 - samples/sec: 3476.52 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 15:27:27,805 epoch 4 - iter 712/893 - loss 0.04875852 - time (sec): 56.98 - samples/sec: 3480.22 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 15:27:35,059 epoch 4 - iter 801/893 - loss 0.04852640 - time (sec): 64.23 - samples/sec: 3481.36 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 15:27:42,111 epoch 4 - iter 890/893 - loss 0.04900835 - time (sec): 71.28 - samples/sec: 3476.67 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 15:27:42,383 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 15:27:42,383 EPOCH 4 done: loss 0.0490 - lr: 0.000033
|
131 |
+
2023-10-17 15:27:47,452 DEV : loss 0.14032277464866638 - f1-score (micro avg) 0.7902
|
132 |
+
2023-10-17 15:27:47,469 saving best model
|
133 |
+
2023-10-17 15:27:48,074 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 15:27:55,354 epoch 5 - iter 89/893 - loss 0.03298580 - time (sec): 7.28 - samples/sec: 3427.76 - lr: 0.000033 - momentum: 0.000000
|
135 |
+
2023-10-17 15:28:02,257 epoch 5 - iter 178/893 - loss 0.03246417 - time (sec): 14.18 - samples/sec: 3456.52 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 15:28:09,321 epoch 5 - iter 267/893 - loss 0.03531081 - time (sec): 21.25 - samples/sec: 3460.53 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-17 15:28:15,814 epoch 5 - iter 356/893 - loss 0.03662109 - time (sec): 27.74 - samples/sec: 3493.64 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 15:28:22,989 epoch 5 - iter 445/893 - loss 0.03546838 - time (sec): 34.91 - samples/sec: 3475.11 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-17 15:28:30,063 epoch 5 - iter 534/893 - loss 0.03683038 - time (sec): 41.99 - samples/sec: 3489.91 - lr: 0.000030 - momentum: 0.000000
|
140 |
+
2023-10-17 15:28:37,101 epoch 5 - iter 623/893 - loss 0.03593909 - time (sec): 49.03 - samples/sec: 3508.58 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 15:28:44,180 epoch 5 - iter 712/893 - loss 0.03641271 - time (sec): 56.10 - samples/sec: 3514.28 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-17 15:28:51,506 epoch 5 - iter 801/893 - loss 0.03619958 - time (sec): 63.43 - samples/sec: 3519.41 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 15:28:58,451 epoch 5 - iter 890/893 - loss 0.03553096 - time (sec): 70.38 - samples/sec: 3526.38 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-17 15:28:58,615 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 15:28:58,615 EPOCH 5 done: loss 0.0356 - lr: 0.000028
|
146 |
+
2023-10-17 15:29:03,077 DEV : loss 0.15836651623249054 - f1-score (micro avg) 0.796
|
147 |
+
2023-10-17 15:29:03,100 saving best model
|
148 |
+
2023-10-17 15:29:04,345 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 15:29:11,305 epoch 6 - iter 89/893 - loss 0.01800969 - time (sec): 6.96 - samples/sec: 3567.96 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 15:29:17,844 epoch 6 - iter 178/893 - loss 0.02091387 - time (sec): 13.50 - samples/sec: 3542.18 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-17 15:29:25,110 epoch 6 - iter 267/893 - loss 0.02236790 - time (sec): 20.76 - samples/sec: 3520.46 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 15:29:32,572 epoch 6 - iter 356/893 - loss 0.02351990 - time (sec): 28.23 - samples/sec: 3490.62 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-17 15:29:39,486 epoch 6 - iter 445/893 - loss 0.02468375 - time (sec): 35.14 - samples/sec: 3507.96 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-17 15:29:46,768 epoch 6 - iter 534/893 - loss 0.02606959 - time (sec): 42.42 - samples/sec: 3524.54 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 15:29:54,075 epoch 6 - iter 623/893 - loss 0.02639857 - time (sec): 49.73 - samples/sec: 3513.88 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-17 15:30:00,956 epoch 6 - iter 712/893 - loss 0.02599939 - time (sec): 56.61 - samples/sec: 3524.55 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 15:30:07,994 epoch 6 - iter 801/893 - loss 0.02730520 - time (sec): 63.65 - samples/sec: 3523.50 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-17 15:30:14,951 epoch 6 - iter 890/893 - loss 0.02699016 - time (sec): 70.60 - samples/sec: 3512.72 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-17 15:30:15,147 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 15:30:15,147 EPOCH 6 done: loss 0.0269 - lr: 0.000022
|
161 |
+
2023-10-17 15:30:19,463 DEV : loss 0.18827223777770996 - f1-score (micro avg) 0.8073
|
162 |
+
2023-10-17 15:30:19,483 saving best model
|
163 |
+
2023-10-17 15:30:20,021 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-17 15:30:27,186 epoch 7 - iter 89/893 - loss 0.01580982 - time (sec): 7.16 - samples/sec: 3649.38 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-10-17 15:30:34,189 epoch 7 - iter 178/893 - loss 0.01835420 - time (sec): 14.17 - samples/sec: 3574.06 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-17 15:30:41,197 epoch 7 - iter 267/893 - loss 0.01852637 - time (sec): 21.17 - samples/sec: 3502.01 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-17 15:30:48,198 epoch 7 - iter 356/893 - loss 0.01824809 - time (sec): 28.17 - samples/sec: 3531.46 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-17 15:30:55,196 epoch 7 - iter 445/893 - loss 0.01887441 - time (sec): 35.17 - samples/sec: 3536.41 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-17 15:31:01,894 epoch 7 - iter 534/893 - loss 0.01977477 - time (sec): 41.87 - samples/sec: 3560.21 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-17 15:31:08,667 epoch 7 - iter 623/893 - loss 0.01999407 - time (sec): 48.64 - samples/sec: 3563.02 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-17 15:31:15,718 epoch 7 - iter 712/893 - loss 0.02000396 - time (sec): 55.69 - samples/sec: 3540.87 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-17 15:31:23,232 epoch 7 - iter 801/893 - loss 0.02042434 - time (sec): 63.21 - samples/sec: 3529.38 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-17 15:31:30,175 epoch 7 - iter 890/893 - loss 0.01995623 - time (sec): 70.15 - samples/sec: 3538.79 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-17 15:31:30,393 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 15:31:30,393 EPOCH 7 done: loss 0.0200 - lr: 0.000017
|
176 |
+
2023-10-17 15:31:35,286 DEV : loss 0.20268814265727997 - f1-score (micro avg) 0.8297
|
177 |
+
2023-10-17 15:31:35,303 saving best model
|
178 |
+
2023-10-17 15:31:35,839 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-17 15:31:42,909 epoch 8 - iter 89/893 - loss 0.01596133 - time (sec): 7.07 - samples/sec: 3402.93 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-17 15:31:49,701 epoch 8 - iter 178/893 - loss 0.01480964 - time (sec): 13.86 - samples/sec: 3462.00 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-17 15:31:57,025 epoch 8 - iter 267/893 - loss 0.01675137 - time (sec): 21.18 - samples/sec: 3458.33 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-17 15:32:04,151 epoch 8 - iter 356/893 - loss 0.01522643 - time (sec): 28.31 - samples/sec: 3507.66 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-17 15:32:11,825 epoch 8 - iter 445/893 - loss 0.01508987 - time (sec): 35.98 - samples/sec: 3519.28 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-17 15:32:19,048 epoch 8 - iter 534/893 - loss 0.01436513 - time (sec): 43.21 - samples/sec: 3523.03 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-17 15:32:26,166 epoch 8 - iter 623/893 - loss 0.01425423 - time (sec): 50.32 - samples/sec: 3515.51 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-17 15:32:33,130 epoch 8 - iter 712/893 - loss 0.01422439 - time (sec): 57.29 - samples/sec: 3501.42 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-17 15:32:40,051 epoch 8 - iter 801/893 - loss 0.01401622 - time (sec): 64.21 - samples/sec: 3498.11 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-17 15:32:46,708 epoch 8 - iter 890/893 - loss 0.01447625 - time (sec): 70.87 - samples/sec: 3496.21 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-17 15:32:46,993 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 15:32:46,993 EPOCH 8 done: loss 0.0145 - lr: 0.000011
|
191 |
+
2023-10-17 15:32:51,297 DEV : loss 0.18800464272499084 - f1-score (micro avg) 0.8212
|
192 |
+
2023-10-17 15:32:51,315 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-17 15:32:58,164 epoch 9 - iter 89/893 - loss 0.01188764 - time (sec): 6.85 - samples/sec: 3518.48 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-17 15:33:04,766 epoch 9 - iter 178/893 - loss 0.01149941 - time (sec): 13.45 - samples/sec: 3575.04 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-17 15:33:11,658 epoch 9 - iter 267/893 - loss 0.01223126 - time (sec): 20.34 - samples/sec: 3572.33 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-17 15:33:18,377 epoch 9 - iter 356/893 - loss 0.01060371 - time (sec): 27.06 - samples/sec: 3578.76 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-17 15:33:26,375 epoch 9 - iter 445/893 - loss 0.01014695 - time (sec): 35.06 - samples/sec: 3508.51 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-17 15:33:33,290 epoch 9 - iter 534/893 - loss 0.01151378 - time (sec): 41.97 - samples/sec: 3544.73 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-17 15:33:40,363 epoch 9 - iter 623/893 - loss 0.01164043 - time (sec): 49.05 - samples/sec: 3520.41 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-17 15:33:47,206 epoch 9 - iter 712/893 - loss 0.01090414 - time (sec): 55.89 - samples/sec: 3536.84 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-17 15:33:54,230 epoch 9 - iter 801/893 - loss 0.01064507 - time (sec): 62.91 - samples/sec: 3534.84 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-17 15:34:01,797 epoch 9 - iter 890/893 - loss 0.01012024 - time (sec): 70.48 - samples/sec: 3516.33 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-17 15:34:02,023 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 15:34:02,023 EPOCH 9 done: loss 0.0101 - lr: 0.000006
|
205 |
+
2023-10-17 15:34:06,256 DEV : loss 0.20825740694999695 - f1-score (micro avg) 0.8223
|
206 |
+
2023-10-17 15:34:06,274 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 15:34:13,338 epoch 10 - iter 89/893 - loss 0.01106391 - time (sec): 7.06 - samples/sec: 3428.06 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-17 15:34:19,986 epoch 10 - iter 178/893 - loss 0.00869302 - time (sec): 13.71 - samples/sec: 3528.09 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-17 15:34:27,221 epoch 10 - iter 267/893 - loss 0.00786190 - time (sec): 20.95 - samples/sec: 3535.88 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-17 15:34:33,970 epoch 10 - iter 356/893 - loss 0.00840030 - time (sec): 27.69 - samples/sec: 3499.03 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-17 15:34:40,742 epoch 10 - iter 445/893 - loss 0.00768042 - time (sec): 34.47 - samples/sec: 3487.42 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-17 15:34:48,133 epoch 10 - iter 534/893 - loss 0.00760238 - time (sec): 41.86 - samples/sec: 3472.82 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-17 15:34:55,488 epoch 10 - iter 623/893 - loss 0.00744283 - time (sec): 49.21 - samples/sec: 3468.31 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-17 15:35:02,728 epoch 10 - iter 712/893 - loss 0.00710376 - time (sec): 56.45 - samples/sec: 3457.79 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 15:35:09,784 epoch 10 - iter 801/893 - loss 0.00664551 - time (sec): 63.51 - samples/sec: 3472.68 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-17 15:35:17,319 epoch 10 - iter 890/893 - loss 0.00642147 - time (sec): 71.04 - samples/sec: 3490.94 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 15:35:17,555 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 15:35:17,555 EPOCH 10 done: loss 0.0064 - lr: 0.000000
|
219 |
+
2023-10-17 15:35:22,442 DEV : loss 0.20835766196250916 - f1-score (micro avg) 0.8245
|
220 |
+
2023-10-17 15:35:22,857 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-17 15:35:22,859 Loading model from best epoch ...
|
222 |
+
2023-10-17 15:35:24,412 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
223 |
+
2023-10-17 15:35:34,665
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.721
|
226 |
+
- F-score (macro) 0.6426
|
227 |
+
- Accuracy 0.5799
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
LOC 0.7364 0.7397 0.7380 1095
|
233 |
+
PER 0.7921 0.7717 0.7818 1012
|
234 |
+
ORG 0.5012 0.5826 0.5389 357
|
235 |
+
HumanProd 0.4151 0.6667 0.5116 33
|
236 |
+
|
237 |
+
micro avg 0.7130 0.7293 0.7210 2497
|
238 |
+
macro avg 0.6112 0.6902 0.6426 2497
|
239 |
+
weighted avg 0.7211 0.7293 0.7243 2497
|
240 |
+
|
241 |
+
2023-10-17 15:35:34,665 ----------------------------------------------------------------------------------------------------
|