Upload ./training.log with huggingface_hub
Browse files- training.log +245 -0
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 21:28:09,101 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 21:28:09,102 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-25 21:28:09,102 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-25 21:28:09,102 MultiCorpus: 1085 train + 148 dev + 364 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
|
53 |
+
2023-10-25 21:28:09,102 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-25 21:28:09,103 Train: 1085 sentences
|
55 |
+
2023-10-25 21:28:09,103 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-25 21:28:09,103 Training Params:
|
58 |
+
2023-10-25 21:28:09,103 - learning_rate: "5e-05"
|
59 |
+
2023-10-25 21:28:09,103 - mini_batch_size: "4"
|
60 |
+
2023-10-25 21:28:09,103 - max_epochs: "10"
|
61 |
+
2023-10-25 21:28:09,103 - shuffle: "True"
|
62 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-25 21:28:09,103 Plugins:
|
64 |
+
2023-10-25 21:28:09,103 - TensorboardLogger
|
65 |
+
2023-10-25 21:28:09,103 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-25 21:28:09,103 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-25 21:28:09,103 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-25 21:28:09,103 Computation:
|
71 |
+
2023-10-25 21:28:09,103 - compute on device: cuda:0
|
72 |
+
2023-10-25 21:28:09,103 - embedding storage: none
|
73 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-25 21:28:09,103 Model training base path: "hmbench-newseye/sv-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-25 21:28:09,103 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-25 21:28:09,103 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-25 21:28:10,568 epoch 1 - iter 27/272 - loss 2.78765850 - time (sec): 1.46 - samples/sec: 3749.30 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-25 21:28:12,027 epoch 1 - iter 54/272 - loss 2.00101582 - time (sec): 2.92 - samples/sec: 3713.94 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-25 21:28:13,451 epoch 1 - iter 81/272 - loss 1.57394260 - time (sec): 4.35 - samples/sec: 3560.78 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-25 21:28:14,978 epoch 1 - iter 108/272 - loss 1.25429045 - time (sec): 5.87 - samples/sec: 3555.28 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-25 21:28:16,446 epoch 1 - iter 135/272 - loss 1.07013551 - time (sec): 7.34 - samples/sec: 3469.41 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-25 21:28:17,961 epoch 1 - iter 162/272 - loss 0.92511254 - time (sec): 8.86 - samples/sec: 3510.43 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-25 21:28:19,538 epoch 1 - iter 189/272 - loss 0.82909206 - time (sec): 10.43 - samples/sec: 3458.10 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-25 21:28:21,053 epoch 1 - iter 216/272 - loss 0.74558155 - time (sec): 11.95 - samples/sec: 3467.28 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-25 21:28:22,540 epoch 1 - iter 243/272 - loss 0.68899771 - time (sec): 13.44 - samples/sec: 3437.71 - lr: 0.000044 - momentum: 0.000000
|
87 |
+
2023-10-25 21:28:24,103 epoch 1 - iter 270/272 - loss 0.64040727 - time (sec): 15.00 - samples/sec: 3450.74 - lr: 0.000049 - momentum: 0.000000
|
88 |
+
2023-10-25 21:28:24,209 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-25 21:28:24,209 EPOCH 1 done: loss 0.6380 - lr: 0.000049
|
90 |
+
2023-10-25 21:28:24,928 DEV : loss 0.14035949110984802 - f1-score (micro avg) 0.6881
|
91 |
+
2023-10-25 21:28:24,934 saving best model
|
92 |
+
2023-10-25 21:28:25,364 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-25 21:28:26,882 epoch 2 - iter 27/272 - loss 0.09840230 - time (sec): 1.52 - samples/sec: 3106.26 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-25 21:28:28,448 epoch 2 - iter 54/272 - loss 0.09235375 - time (sec): 3.08 - samples/sec: 3434.25 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-25 21:28:30,007 epoch 2 - iter 81/272 - loss 0.11428755 - time (sec): 4.64 - samples/sec: 3233.28 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-25 21:28:31,513 epoch 2 - iter 108/272 - loss 0.11632033 - time (sec): 6.15 - samples/sec: 3451.06 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-25 21:28:33,039 epoch 2 - iter 135/272 - loss 0.11619477 - time (sec): 7.67 - samples/sec: 3453.70 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-25 21:28:34,571 epoch 2 - iter 162/272 - loss 0.11865776 - time (sec): 9.21 - samples/sec: 3407.72 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-25 21:28:36,059 epoch 2 - iter 189/272 - loss 0.11920523 - time (sec): 10.69 - samples/sec: 3470.34 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-25 21:28:37,574 epoch 2 - iter 216/272 - loss 0.11666654 - time (sec): 12.21 - samples/sec: 3540.98 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-25 21:28:39,053 epoch 2 - iter 243/272 - loss 0.11787206 - time (sec): 13.69 - samples/sec: 3477.79 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-25 21:28:40,560 epoch 2 - iter 270/272 - loss 0.12009223 - time (sec): 15.19 - samples/sec: 3412.65 - lr: 0.000045 - momentum: 0.000000
|
103 |
+
2023-10-25 21:28:40,657 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-25 21:28:40,657 EPOCH 2 done: loss 0.1202 - lr: 0.000045
|
105 |
+
2023-10-25 21:28:41,905 DEV : loss 0.12892909348011017 - f1-score (micro avg) 0.7395
|
106 |
+
2023-10-25 21:28:41,911 saving best model
|
107 |
+
2023-10-25 21:28:42,606 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-25 21:28:44,437 epoch 3 - iter 27/272 - loss 0.09342546 - time (sec): 1.82 - samples/sec: 2742.45 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-25 21:28:45,908 epoch 3 - iter 54/272 - loss 0.07117048 - time (sec): 3.29 - samples/sec: 3278.77 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-25 21:28:47,432 epoch 3 - iter 81/272 - loss 0.06750136 - time (sec): 4.81 - samples/sec: 3238.86 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-25 21:28:48,965 epoch 3 - iter 108/272 - loss 0.06927074 - time (sec): 6.34 - samples/sec: 3317.73 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-25 21:28:50,533 epoch 3 - iter 135/272 - loss 0.06639235 - time (sec): 7.91 - samples/sec: 3380.15 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-25 21:28:52,011 epoch 3 - iter 162/272 - loss 0.06610577 - time (sec): 9.39 - samples/sec: 3350.69 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-25 21:28:53,559 epoch 3 - iter 189/272 - loss 0.07007724 - time (sec): 10.94 - samples/sec: 3314.61 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-25 21:28:55,123 epoch 3 - iter 216/272 - loss 0.06922837 - time (sec): 12.50 - samples/sec: 3315.90 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-25 21:28:56,720 epoch 3 - iter 243/272 - loss 0.06963662 - time (sec): 14.10 - samples/sec: 3284.26 - lr: 0.000040 - momentum: 0.000000
|
117 |
+
2023-10-25 21:28:58,265 epoch 3 - iter 270/272 - loss 0.06919947 - time (sec): 15.64 - samples/sec: 3310.51 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-25 21:28:58,371 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-25 21:28:58,371 EPOCH 3 done: loss 0.0690 - lr: 0.000039
|
120 |
+
2023-10-25 21:28:59,614 DEV : loss 0.1450655460357666 - f1-score (micro avg) 0.7698
|
121 |
+
2023-10-25 21:28:59,620 saving best model
|
122 |
+
2023-10-25 21:29:00,271 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-25 21:29:01,797 epoch 4 - iter 27/272 - loss 0.03839164 - time (sec): 1.52 - samples/sec: 3389.43 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-25 21:29:03,246 epoch 4 - iter 54/272 - loss 0.05836842 - time (sec): 2.97 - samples/sec: 3375.16 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-25 21:29:04,837 epoch 4 - iter 81/272 - loss 0.05467419 - time (sec): 4.56 - samples/sec: 3543.96 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-25 21:29:06,369 epoch 4 - iter 108/272 - loss 0.05545031 - time (sec): 6.09 - samples/sec: 3456.12 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-25 21:29:07,934 epoch 4 - iter 135/272 - loss 0.05172334 - time (sec): 7.66 - samples/sec: 3437.62 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-25 21:29:09,467 epoch 4 - iter 162/272 - loss 0.05002860 - time (sec): 9.19 - samples/sec: 3467.60 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-25 21:29:10,944 epoch 4 - iter 189/272 - loss 0.04822871 - time (sec): 10.67 - samples/sec: 3465.66 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-25 21:29:12,476 epoch 4 - iter 216/272 - loss 0.04524283 - time (sec): 12.20 - samples/sec: 3457.22 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-25 21:29:13,983 epoch 4 - iter 243/272 - loss 0.04533348 - time (sec): 13.71 - samples/sec: 3443.64 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-25 21:29:15,536 epoch 4 - iter 270/272 - loss 0.04712815 - time (sec): 15.26 - samples/sec: 3395.72 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-25 21:29:15,635 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-25 21:29:15,636 EPOCH 4 done: loss 0.0470 - lr: 0.000033
|
135 |
+
2023-10-25 21:29:16,808 DEV : loss 0.14436790347099304 - f1-score (micro avg) 0.7925
|
136 |
+
2023-10-25 21:29:16,814 saving best model
|
137 |
+
2023-10-25 21:29:17,460 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-25 21:29:19,028 epoch 5 - iter 27/272 - loss 0.02507648 - time (sec): 1.56 - samples/sec: 3238.49 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-25 21:29:20,566 epoch 5 - iter 54/272 - loss 0.03155307 - time (sec): 3.10 - samples/sec: 3166.66 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-25 21:29:22,132 epoch 5 - iter 81/272 - loss 0.02739434 - time (sec): 4.67 - samples/sec: 3166.84 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-25 21:29:23,726 epoch 5 - iter 108/272 - loss 0.02941651 - time (sec): 6.26 - samples/sec: 3191.64 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-25 21:29:25,199 epoch 5 - iter 135/272 - loss 0.02739614 - time (sec): 7.74 - samples/sec: 3135.22 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-25 21:29:26,698 epoch 5 - iter 162/272 - loss 0.03066702 - time (sec): 9.23 - samples/sec: 3237.55 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-25 21:29:28,219 epoch 5 - iter 189/272 - loss 0.03167286 - time (sec): 10.76 - samples/sec: 3268.30 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-25 21:29:29,737 epoch 5 - iter 216/272 - loss 0.03130840 - time (sec): 12.27 - samples/sec: 3274.44 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-25 21:29:31,274 epoch 5 - iter 243/272 - loss 0.03201179 - time (sec): 13.81 - samples/sec: 3346.11 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-25 21:29:32,794 epoch 5 - iter 270/272 - loss 0.03426102 - time (sec): 15.33 - samples/sec: 3380.00 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-25 21:29:32,902 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-25 21:29:32,902 EPOCH 5 done: loss 0.0342 - lr: 0.000028
|
150 |
+
2023-10-25 21:29:34,118 DEV : loss 0.1501101553440094 - f1-score (micro avg) 0.7964
|
151 |
+
2023-10-25 21:29:34,124 saving best model
|
152 |
+
2023-10-25 21:29:34,805 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-25 21:29:36,368 epoch 6 - iter 27/272 - loss 0.01909779 - time (sec): 1.56 - samples/sec: 3493.85 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-25 21:29:37,843 epoch 6 - iter 54/272 - loss 0.01727977 - time (sec): 3.04 - samples/sec: 3533.53 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-25 21:29:39,322 epoch 6 - iter 81/272 - loss 0.01553708 - time (sec): 4.51 - samples/sec: 3427.14 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-25 21:29:40,841 epoch 6 - iter 108/272 - loss 0.01998247 - time (sec): 6.03 - samples/sec: 3439.13 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-25 21:29:42,736 epoch 6 - iter 135/272 - loss 0.01744104 - time (sec): 7.93 - samples/sec: 3234.22 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-25 21:29:44,174 epoch 6 - iter 162/272 - loss 0.01847424 - time (sec): 9.37 - samples/sec: 3320.47 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-25 21:29:45,642 epoch 6 - iter 189/272 - loss 0.01935988 - time (sec): 10.83 - samples/sec: 3383.82 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-25 21:29:47,102 epoch 6 - iter 216/272 - loss 0.01931684 - time (sec): 12.29 - samples/sec: 3326.04 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-25 21:29:48,602 epoch 6 - iter 243/272 - loss 0.01934257 - time (sec): 13.79 - samples/sec: 3372.67 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-25 21:29:50,066 epoch 6 - iter 270/272 - loss 0.02070140 - time (sec): 15.26 - samples/sec: 3379.89 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-25 21:29:50,171 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-25 21:29:50,172 EPOCH 6 done: loss 0.0205 - lr: 0.000022
|
165 |
+
2023-10-25 21:29:51,433 DEV : loss 0.165546253323555 - f1-score (micro avg) 0.8066
|
166 |
+
2023-10-25 21:29:51,440 saving best model
|
167 |
+
2023-10-25 21:29:54,714 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-25 21:29:56,247 epoch 7 - iter 27/272 - loss 0.00697830 - time (sec): 1.53 - samples/sec: 3623.25 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-25 21:29:57,777 epoch 7 - iter 54/272 - loss 0.00914022 - time (sec): 3.06 - samples/sec: 3451.66 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-25 21:29:59,278 epoch 7 - iter 81/272 - loss 0.00936467 - time (sec): 4.56 - samples/sec: 3464.62 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-25 21:30:00,780 epoch 7 - iter 108/272 - loss 0.00900487 - time (sec): 6.06 - samples/sec: 3543.39 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-25 21:30:02,352 epoch 7 - iter 135/272 - loss 0.01188333 - time (sec): 7.64 - samples/sec: 3443.14 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-25 21:30:03,855 epoch 7 - iter 162/272 - loss 0.01348404 - time (sec): 9.14 - samples/sec: 3432.95 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-25 21:30:05,413 epoch 7 - iter 189/272 - loss 0.01577447 - time (sec): 10.70 - samples/sec: 3464.67 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-25 21:30:06,948 epoch 7 - iter 216/272 - loss 0.01509764 - time (sec): 12.23 - samples/sec: 3455.51 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-25 21:30:08,406 epoch 7 - iter 243/272 - loss 0.01702924 - time (sec): 13.69 - samples/sec: 3423.92 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-25 21:30:09,929 epoch 7 - iter 270/272 - loss 0.01657090 - time (sec): 15.21 - samples/sec: 3393.89 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-25 21:30:10,042 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-25 21:30:10,042 EPOCH 7 done: loss 0.0165 - lr: 0.000017
|
180 |
+
2023-10-25 21:30:11,380 DEV : loss 0.18749994039535522 - f1-score (micro avg) 0.8036
|
181 |
+
2023-10-25 21:30:11,386 ----------------------------------------------------------------------------------------------------
|
182 |
+
2023-10-25 21:30:12,890 epoch 8 - iter 27/272 - loss 0.01739788 - time (sec): 1.50 - samples/sec: 4044.12 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-25 21:30:14,357 epoch 8 - iter 54/272 - loss 0.01871958 - time (sec): 2.97 - samples/sec: 3716.48 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-25 21:30:15,894 epoch 8 - iter 81/272 - loss 0.01462857 - time (sec): 4.51 - samples/sec: 3692.83 - lr: 0.000015 - momentum: 0.000000
|
185 |
+
2023-10-25 21:30:17,387 epoch 8 - iter 108/272 - loss 0.01387024 - time (sec): 6.00 - samples/sec: 3631.22 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-25 21:30:18,930 epoch 8 - iter 135/272 - loss 0.01409383 - time (sec): 7.54 - samples/sec: 3613.71 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-25 21:30:20,417 epoch 8 - iter 162/272 - loss 0.01425509 - time (sec): 9.03 - samples/sec: 3556.26 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-25 21:30:21,950 epoch 8 - iter 189/272 - loss 0.01373470 - time (sec): 10.56 - samples/sec: 3529.86 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-25 21:30:23,498 epoch 8 - iter 216/272 - loss 0.01224350 - time (sec): 12.11 - samples/sec: 3512.96 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-25 21:30:25,052 epoch 8 - iter 243/272 - loss 0.01131915 - time (sec): 13.67 - samples/sec: 3470.03 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-25 21:30:26,502 epoch 8 - iter 270/272 - loss 0.01157460 - time (sec): 15.12 - samples/sec: 3431.48 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-25 21:30:26,605 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-25 21:30:26,605 EPOCH 8 done: loss 0.0115 - lr: 0.000011
|
194 |
+
2023-10-25 21:30:27,835 DEV : loss 0.17698289453983307 - f1-score (micro avg) 0.8266
|
195 |
+
2023-10-25 21:30:27,841 saving best model
|
196 |
+
2023-10-25 21:30:28,465 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-25 21:30:30,036 epoch 9 - iter 27/272 - loss 0.00058588 - time (sec): 1.57 - samples/sec: 3749.18 - lr: 0.000011 - momentum: 0.000000
|
198 |
+
2023-10-25 21:30:31,531 epoch 9 - iter 54/272 - loss 0.00623629 - time (sec): 3.06 - samples/sec: 3569.82 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-25 21:30:33,037 epoch 9 - iter 81/272 - loss 0.00539403 - time (sec): 4.57 - samples/sec: 3400.69 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-25 21:30:34,548 epoch 9 - iter 108/272 - loss 0.00741251 - time (sec): 6.08 - samples/sec: 3341.22 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-25 21:30:36,038 epoch 9 - iter 135/272 - loss 0.00926729 - time (sec): 7.57 - samples/sec: 3391.09 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-25 21:30:37,554 epoch 9 - iter 162/272 - loss 0.00852067 - time (sec): 9.09 - samples/sec: 3414.77 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-25 21:30:39,074 epoch 9 - iter 189/272 - loss 0.00788998 - time (sec): 10.61 - samples/sec: 3466.92 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-25 21:30:40,588 epoch 9 - iter 216/272 - loss 0.00711701 - time (sec): 12.12 - samples/sec: 3418.25 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-25 21:30:42,061 epoch 9 - iter 243/272 - loss 0.00659543 - time (sec): 13.59 - samples/sec: 3439.13 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-25 21:30:43,592 epoch 9 - iter 270/272 - loss 0.00744715 - time (sec): 15.13 - samples/sec: 3427.52 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-25 21:30:43,695 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-25 21:30:43,696 EPOCH 9 done: loss 0.0074 - lr: 0.000006
|
209 |
+
2023-10-25 21:30:45,471 DEV : loss 0.1907862275838852 - f1-score (micro avg) 0.822
|
210 |
+
2023-10-25 21:30:45,478 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-25 21:30:46,944 epoch 10 - iter 27/272 - loss 0.00585267 - time (sec): 1.47 - samples/sec: 3723.63 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-25 21:30:48,393 epoch 10 - iter 54/272 - loss 0.00495959 - time (sec): 2.91 - samples/sec: 3508.61 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-25 21:30:49,885 epoch 10 - iter 81/272 - loss 0.00450007 - time (sec): 4.41 - samples/sec: 3559.91 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-25 21:30:51,343 epoch 10 - iter 108/272 - loss 0.00425761 - time (sec): 5.86 - samples/sec: 3633.67 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-25 21:30:52,829 epoch 10 - iter 135/272 - loss 0.00470265 - time (sec): 7.35 - samples/sec: 3550.95 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-25 21:30:54,275 epoch 10 - iter 162/272 - loss 0.00419178 - time (sec): 8.80 - samples/sec: 3540.66 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-25 21:30:55,718 epoch 10 - iter 189/272 - loss 0.00450719 - time (sec): 10.24 - samples/sec: 3586.16 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-25 21:30:57,167 epoch 10 - iter 216/272 - loss 0.00419873 - time (sec): 11.69 - samples/sec: 3564.16 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-25 21:30:58,628 epoch 10 - iter 243/272 - loss 0.00473732 - time (sec): 13.15 - samples/sec: 3537.51 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-25 21:31:00,035 epoch 10 - iter 270/272 - loss 0.00519675 - time (sec): 14.56 - samples/sec: 3555.18 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-25 21:31:00,128 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-25 21:31:00,128 EPOCH 10 done: loss 0.0052 - lr: 0.000000
|
223 |
+
2023-10-25 21:31:01,313 DEV : loss 0.19103476405143738 - f1-score (micro avg) 0.8205
|
224 |
+
2023-10-25 21:31:01,785 ----------------------------------------------------------------------------------------------------
|
225 |
+
2023-10-25 21:31:01,786 Loading model from best epoch ...
|
226 |
+
2023-10-25 21:31:03,678 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
|
227 |
+
2023-10-25 21:31:05,500
|
228 |
+
Results:
|
229 |
+
- F-score (micro) 0.7823
|
230 |
+
- F-score (macro) 0.7373
|
231 |
+
- Accuracy 0.664
|
232 |
+
|
233 |
+
By class:
|
234 |
+
precision recall f1-score support
|
235 |
+
|
236 |
+
LOC 0.8000 0.8718 0.8344 312
|
237 |
+
PER 0.6947 0.8750 0.7745 208
|
238 |
+
ORG 0.4545 0.3636 0.4040 55
|
239 |
+
HumanProd 0.8800 1.0000 0.9362 22
|
240 |
+
|
241 |
+
micro avg 0.7392 0.8308 0.7823 597
|
242 |
+
macro avg 0.7073 0.7776 0.7373 597
|
243 |
+
weighted avg 0.7344 0.8308 0.7776 597
|
244 |
+
|
245 |
+
2023-10-25 21:31:05,500 ----------------------------------------------------------------------------------------------------
|